CO 2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers

Human activities in the last one and a half centuries have perturbed the natural carbon cycle, shifting massive amounts of carbon from the geosphere into the atmosphere and leading to climate change at an unprecedented pace. Carbon capture and storage, consisting of capturing CO 2 from fossil fuel e...

Full description

Bibliographic Details
Published in:Chem
Main Authors: Williams, Neil J., Seipp, Charles A., Brethomé, Flavien M., Ma, Ying -Zhong, Ivanov, Alexander S., Bryantsev, Vyacheslav S., Kidder, Michelle K., Martin, Halie J., Holguin, Erick, Garrabrant, Kathleen A., Custelcean, Radu
Language:unknown
Published: 2021
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1493130
https://www.osti.gov/biblio/1493130
https://doi.org/10.1016/j.chempr.2018.12.025
id ftosti:oai:osti.gov:1493130
record_format openpolar
spelling ftosti:oai:osti.gov:1493130 2023-07-30T04:02:55+02:00 CO 2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers Williams, Neil J. Seipp, Charles A. Brethomé, Flavien M. Ma, Ying -Zhong Ivanov, Alexander S. Bryantsev, Vyacheslav S. Kidder, Michelle K. Martin, Halie J. Holguin, Erick Garrabrant, Kathleen A. Custelcean, Radu 2021-08-31 application/pdf http://www.osti.gov/servlets/purl/1493130 https://www.osti.gov/biblio/1493130 https://doi.org/10.1016/j.chempr.2018.12.025 unknown http://www.osti.gov/servlets/purl/1493130 https://www.osti.gov/biblio/1493130 https://doi.org/10.1016/j.chempr.2018.12.025 doi:10.1016/j.chempr.2018.12.025 37 INORGANIC ORGANIC PHYSICAL AND ANALYTICAL CHEMISTRY 2021 ftosti https://doi.org/10.1016/j.chempr.2018.12.025 2023-07-11T09:31:11Z Human activities in the last one and a half centuries have perturbed the natural carbon cycle, shifting massive amounts of carbon from the geosphere into the atmosphere and leading to climate change at an unprecedented pace. Carbon capture and storage, consisting of capturing CO 2 from fossil fuel emissions and sequestering it deep underground, offer the prospect of limiting the increase in the atmospheric CO 2 concentration and the global temperature. This requires the development and large-scale deployment of energy-efficient carbon-capture technologies. Here, we demonstrate a promising approach to CO 2 capture based on crystallization of bicarbonate-water clusters with a simple guanidine compound. Furthermore, the CO 2 separation cycle involves a unique proton-transfer mechanism via the formation of a carbonic acid dimer, leading to efficient CO 2 release and quantitative regeneration of the guanidine compound and requiring significantly less energy than state-of-the-art carbon-capture technologies. Other/Unknown Material Carbonic acid SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy) Chem 5 3 719 730
institution Open Polar
collection SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy)
op_collection_id ftosti
language unknown
topic 37 INORGANIC
ORGANIC
PHYSICAL
AND ANALYTICAL CHEMISTRY
spellingShingle 37 INORGANIC
ORGANIC
PHYSICAL
AND ANALYTICAL CHEMISTRY
Williams, Neil J.
Seipp, Charles A.
Brethomé, Flavien M.
Ma, Ying -Zhong
Ivanov, Alexander S.
Bryantsev, Vyacheslav S.
Kidder, Michelle K.
Martin, Halie J.
Holguin, Erick
Garrabrant, Kathleen A.
Custelcean, Radu
CO 2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers
topic_facet 37 INORGANIC
ORGANIC
PHYSICAL
AND ANALYTICAL CHEMISTRY
description Human activities in the last one and a half centuries have perturbed the natural carbon cycle, shifting massive amounts of carbon from the geosphere into the atmosphere and leading to climate change at an unprecedented pace. Carbon capture and storage, consisting of capturing CO 2 from fossil fuel emissions and sequestering it deep underground, offer the prospect of limiting the increase in the atmospheric CO 2 concentration and the global temperature. This requires the development and large-scale deployment of energy-efficient carbon-capture technologies. Here, we demonstrate a promising approach to CO 2 capture based on crystallization of bicarbonate-water clusters with a simple guanidine compound. Furthermore, the CO 2 separation cycle involves a unique proton-transfer mechanism via the formation of a carbonic acid dimer, leading to efficient CO 2 release and quantitative regeneration of the guanidine compound and requiring significantly less energy than state-of-the-art carbon-capture technologies.
author Williams, Neil J.
Seipp, Charles A.
Brethomé, Flavien M.
Ma, Ying -Zhong
Ivanov, Alexander S.
Bryantsev, Vyacheslav S.
Kidder, Michelle K.
Martin, Halie J.
Holguin, Erick
Garrabrant, Kathleen A.
Custelcean, Radu
author_facet Williams, Neil J.
Seipp, Charles A.
Brethomé, Flavien M.
Ma, Ying -Zhong
Ivanov, Alexander S.
Bryantsev, Vyacheslav S.
Kidder, Michelle K.
Martin, Halie J.
Holguin, Erick
Garrabrant, Kathleen A.
Custelcean, Radu
author_sort Williams, Neil J.
title CO 2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers
title_short CO 2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers
title_full CO 2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers
title_fullStr CO 2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers
title_full_unstemmed CO 2 Capture via Crystalline Hydrogen-Bonded Bicarbonate Dimers
title_sort co 2 capture via crystalline hydrogen-bonded bicarbonate dimers
publishDate 2021
url http://www.osti.gov/servlets/purl/1493130
https://www.osti.gov/biblio/1493130
https://doi.org/10.1016/j.chempr.2018.12.025
genre Carbonic acid
genre_facet Carbonic acid
op_relation http://www.osti.gov/servlets/purl/1493130
https://www.osti.gov/biblio/1493130
https://doi.org/10.1016/j.chempr.2018.12.025
doi:10.1016/j.chempr.2018.12.025
op_doi https://doi.org/10.1016/j.chempr.2018.12.025
container_title Chem
container_volume 5
container_issue 3
container_start_page 719
op_container_end_page 730
_version_ 1772813798856458240