Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effec...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Jiang, Yiquan, Lu, Zheng, Liu, Xiaohong, Qian, Yun, Zhang, Kai, Wang, Yuhang, Yang, Xiu -Qun
Language:unknown
Published: 2022
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1339838
https://www.osti.gov/biblio/1339838
https://doi.org/10.5194/acp-16-14805-2016
id ftosti:oai:osti.gov:1339838
record_format openpolar
spelling ftosti:oai:osti.gov:1339838 2023-07-30T03:55:40+02:00 Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5 Jiang, Yiquan Lu, Zheng Liu, Xiaohong Qian, Yun Zhang, Kai Wang, Yuhang Yang, Xiu -Qun 2022-05-23 application/pdf http://www.osti.gov/servlets/purl/1339838 https://www.osti.gov/biblio/1339838 https://doi.org/10.5194/acp-16-14805-2016 unknown http://www.osti.gov/servlets/purl/1339838 https://www.osti.gov/biblio/1339838 https://doi.org/10.5194/acp-16-14805-2016 doi:10.5194/acp-16-14805-2016 54 ENVIRONMENTAL SCIENCES 2022 ftosti https://doi.org/10.5194/acp-16-14805-2016 2023-07-11T09:16:51Z Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m –2 (1 σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m –2 ), while fire POM induces a small effect (–0.05 and 0.04 ± 0.01 W m –2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is –0.70 ± 0.05 W m –2 , resulting mainly from the fire POM effect (–0.59 ± 0.03 W m –2 ). REari (0.43 ± 0.03 W m –2 ) and REaci (–1.38 ± 0.23 W m –2 ) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and –0.82 ± 0.09 W m –2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to –15 W m –2 ) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. Furthermore, the global annual mean RE due to surface-albedo changes (REsac) over land areas (0.030 ± 0.10 W m –2 ) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m –2 ) with the maximum albedo effect occurring in spring (0.12 ... Other/Unknown Material albedo Arctic black carbon Climate change SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy) Arctic Atmospheric Chemistry and Physics 16 23 14805 14824
institution Open Polar
collection SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy)
op_collection_id ftosti
language unknown
topic 54 ENVIRONMENTAL SCIENCES
spellingShingle 54 ENVIRONMENTAL SCIENCES
Jiang, Yiquan
Lu, Zheng
Liu, Xiaohong
Qian, Yun
Zhang, Kai
Wang, Yuhang
Yang, Xiu -Qun
Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5
topic_facet 54 ENVIRONMENTAL SCIENCES
description Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m –2 (1 σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m –2 ), while fire POM induces a small effect (–0.05 and 0.04 ± 0.01 W m –2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is –0.70 ± 0.05 W m –2 , resulting mainly from the fire POM effect (–0.59 ± 0.03 W m –2 ). REari (0.43 ± 0.03 W m –2 ) and REaci (–1.38 ± 0.23 W m –2 ) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and –0.82 ± 0.09 W m –2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to –15 W m –2 ) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. Furthermore, the global annual mean RE due to surface-albedo changes (REsac) over land areas (0.030 ± 0.10 W m –2 ) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m –2 ) with the maximum albedo effect occurring in spring (0.12 ...
author Jiang, Yiquan
Lu, Zheng
Liu, Xiaohong
Qian, Yun
Zhang, Kai
Wang, Yuhang
Yang, Xiu -Qun
author_facet Jiang, Yiquan
Lu, Zheng
Liu, Xiaohong
Qian, Yun
Zhang, Kai
Wang, Yuhang
Yang, Xiu -Qun
author_sort Jiang, Yiquan
title Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5
title_short Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5
title_full Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5
title_fullStr Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5
title_full_unstemmed Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5
title_sort impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with cam5
publishDate 2022
url http://www.osti.gov/servlets/purl/1339838
https://www.osti.gov/biblio/1339838
https://doi.org/10.5194/acp-16-14805-2016
geographic Arctic
geographic_facet Arctic
genre albedo
Arctic
black carbon
Climate change
genre_facet albedo
Arctic
black carbon
Climate change
op_relation http://www.osti.gov/servlets/purl/1339838
https://www.osti.gov/biblio/1339838
https://doi.org/10.5194/acp-16-14805-2016
doi:10.5194/acp-16-14805-2016
op_doi https://doi.org/10.5194/acp-16-14805-2016
container_title Atmospheric Chemistry and Physics
container_volume 16
container_issue 23
container_start_page 14805
op_container_end_page 14824
_version_ 1772821134051377152