Catalytic reduction of CO 2 by H 2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities

Ocean acidification and climate change are expected to be two of the most difficult scientific challenges of the 21st century. Converting CO 2 into valuable chemicals and fuels is one of the most practical routes for reducing CO 2 emissions while fossil fuels continue to dominate the energy sector....

Full description

Bibliographic Details
Published in:Energy & Environmental Science
Main Authors: Porosoff, Marc D., Yan, Binhang, Chen, Jingguang G.
Language:unknown
Published: 2023
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1335402
https://www.osti.gov/biblio/1335402
https://doi.org/10.1039/c5ee02657a
Description
Summary:Ocean acidification and climate change are expected to be two of the most difficult scientific challenges of the 21st century. Converting CO 2 into valuable chemicals and fuels is one of the most practical routes for reducing CO 2 emissions while fossil fuels continue to dominate the energy sector. Reducing CO 2 by H 2 using heterogeneous catalysis has been studied extensively, but there are still significant challenges in developing active, selective and stable catalysts suitable for large-scale commercialization. We study the catalytic reduction of CO 2 by H 2 can lead to the formation of three types of products: CO through the reverse water–gas shift (RWGS) reaction, methanol via selective hydrogenation, and hydrocarbons through combination of CO 2 reduction with Fischer–Tropsch (FT) reactions. In addition, investigations into these routes reveal that the stabilization of key reaction intermediates is critically important for controlling catalytic selectivity. Furthermore, viability of these processes is contingent on the development of a CO 2 -free H 2 source on a large enough scale to significantly reduce CO 2 emissions.