Field Evaluation of Real-time Cloud OD Sensor TWST during the DOE ARM TCAP Campaign 2013 Final Campaign Report

The objective of this internal research and development (IRAD)-funded campaign by Aerodyne Research, Inc. was to demonstrate the field-worthiness and assess the performance of a real-time cloud optical depth (COD) sensor (dubbed three-waveband spectrally-agile technique [TWST]) through a side-by-sid...

Full description

Bibliographic Details
Main Authors: Niple, E., Conant, J., Jones, S., Scott, H., Iannarilli, F.
Language:unknown
Published: 2016
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1245973
https://www.osti.gov/biblio/1245973
https://doi.org/10.2172/1245973
Description
Summary:The objective of this internal research and development (IRAD)-funded campaign by Aerodyne Research, Inc. was to demonstrate the field-worthiness and assess the performance of a real-time cloud optical depth (COD) sensor (dubbed three-waveband spectrally-agile technique [TWST]) through a side-by-side comparison with proven, ground-based operational sensors currently deployed at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) site on the Cape Cod National Seashore for the Two-Column Aerosol Project (TCAP). We anticipated direct comparisons with the Aerosol Robotic Network (AERONET; when in cloud mode) and SAS instruments and expected ancillary data from other sensors such as the Total Sky Imager, the Scanning Cloud Radar, and the Microwave Radiometer to facilitate and validate these comparisons. Because the cloud optical depth retrieval algorithms used by AERONET, solar array spectrometer (SAS), and TWST are totally independent, this deployment provided a unique opportunity to evaluate the field performance of TWST. If the effort proves successful, it may qualify TWST for operational service or additional evaluation effort.