Energy Sources for Yotta-TeV Iceberg Showers

In late February of 2002, warming climate along the Antarctic Peninsula triggered a macroscopic particle acceleration event that smashed a 350 Gkg floating ice shelf, called the Larsen B. The particle shower released by the acceleration involved on the order of >10^6 iceberg particles accelerated...

Full description

Bibliographic Details
Main Author: MacAyeal, Douglas
Language:unknown
Published: 2018
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1087600
https://www.osti.gov/biblio/1087600
Description
Summary:In late February of 2002, warming climate along the Antarctic Peninsula triggered a macroscopic particle acceleration event that smashed a 350 Gkg floating ice shelf, called the Larsen B. The particle shower released by the acceleration involved on the order of >10^6 iceberg particles accelerated to an aggregate total kinetic energy of ~10^17 J (100 Mt TNT equivalent). The explosion was so extreme that it caught glaciological science by surprise (an injury to the egos of glaciologists worldwide) and caused glaciers of the Antarctic Peninsula formerly buttressed by the missing ice shelf to surge (yielding a small increment to sea level rise). In this presentation, I shall describe research, both experimental and field oriented, that has revealed the energy source for this explosive event. I shall also describe how climate warming has the capacity to trigger this type of ice-shelf collapse. A review of the geologic record of ice-rafted debris on the ocean floor suggests that extreme, explosive ice-shelf collapse may be a ubiquitous catastrophe that has happened regularly in the past as part of glacial/interglacial climate cycles.