Modeling Pan-Arctic Peatland Carbon Dynamics Under Alternative Warming Scenarios
Peatlands store large amounts of carbon in terrestrial ecosystems and they are vulnerable to recent warming. The ongoing warming may change their carbon sink capacity and could reduce their potential to sequester carbon. In this study, we simulated peatland carbon dynamics in distinct future climate...
Published in: | Geophysical Research Letters |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | http://hdl.handle.net/10852/99948 https://doi.org/10.1029/2021GL095276 |
Summary: | Peatlands store large amounts of carbon in terrestrial ecosystems and they are vulnerable to recent warming. The ongoing warming may change their carbon sink capacity and could reduce their potential to sequester carbon. In this study, we simulated peatland carbon dynamics in distinct future climate conditions using the peatland-vegetation model (LPJ-GUESS). The study examined whether less pronounced warming could further enhance the peatland carbon sink capacity and buffer the effects of climate change. It also determined which trajectory peatland carbon balance would follow, what the main drivers were, and which one would dominate in the future. We found that peatlands will largely retain their carbon sink capacity under the climate scenario RCP2.6 to RCP6.0. They are projected to shift from a carbon sink to a carbon-neutral (5–10 gC m−2 yr−1) in RCP8.5. Higher respiration rates will dominate the net productivity in a warmer world leading to a reduction in carbon sink capacity. |
---|