Mesozoic-Cenozoic regional stress field evolution in Svalbard

Cooling fracture orientations in diabase sills associated with the Cretaceous High Arctic Large Igneous Province and syn‐sedimentary Triassic faults help constrain a model for Svalbard's (NE Barents Shelf) Mesozoic stress field evolution. Fracture data from Edgeøya and adjacent islands in SE Sv...

Full description

Bibliographic Details
Published in:Tectonics
Main Authors: Maher, Harmon, Senger, Kim, Braathen, Alvar, Mulrooney, Mark Joseph, Smyrak-Sikora, Aleksandra, Osmundsen, Per Terje, Ogata, Kei
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/10852/83184
http://urn.nb.no/URN:NBN:no-85939
https://doi.org/10.1029/2018TC005461
id ftoslouniv:oai:www.duo.uio.no:10852/83184
record_format openpolar
spelling ftoslouniv:oai:www.duo.uio.no:10852/83184 2023-05-15T15:11:25+02:00 Mesozoic-Cenozoic regional stress field evolution in Svalbard Maher, Harmon Senger, Kim Braathen, Alvar Mulrooney, Mark Joseph Smyrak-Sikora, Aleksandra Osmundsen, Per Terje Ogata, Kei 2020-10-01T12:48:27Z http://hdl.handle.net/10852/83184 http://urn.nb.no/URN:NBN:no-85939 https://doi.org/10.1029/2018TC005461 EN eng NFR/295208 http://urn.nb.no/URN:NBN:no-85939 Maher, Harmon Senger, Kim Braathen, Alvar Mulrooney, Mark Joseph Smyrak-Sikora, Aleksandra Osmundsen, Per Terje Ogata, Kei . Mesozoic-Cenozoic regional stress field evolution in Svalbard. Tectonics. 2020, 39(4) http://hdl.handle.net/10852/83184 1836153 info:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Tectonics&rft.volume=39&rft.spage=&rft.date=2020 Tectonics 39 4 28 https://doi.org/10.1029/2018TC005461 URN:NBN:no-85939 Fulltext https://www.duo.uio.no/bitstream/handle/10852/83184/5/2018TC005461.pdf 0278-7407 Journal article Tidsskriftartikkel Peer reviewed PublishedVersion 2020 ftoslouniv https://doi.org/10.1029/2018TC005461 2021-02-17T23:30:58Z Cooling fracture orientations in diabase sills associated with the Cretaceous High Arctic Large Igneous Province and syn‐sedimentary Triassic faults help constrain a model for Svalbard's (NE Barents Shelf) Mesozoic stress field evolution. Fracture data from Edgeøya and adjacent islands in SE Svalbard, from S Spitsbergen, and from literature were used to model preferred orientations and temporal relationships. Orthogonal, roughly E‐W and N‐S, joints and veins in sills from SE Svalbard are interpreted as cooling fractures influenced by the ambient stress field. Aligned preferred orientations within the Triassic host strata are associated with a regional Cretaceous jointing episode driven by sill emplacement and/or erosional unloading. The regional maximum horizontal stress (likely σ1) is inferred to have been parallel to a dominant ≈E‐W set. Spitsbergen's more complex joint patterns are associated with proximity to the Cenozoic West Spitsbergen Fold‐and‐Thrust Belt, but ≈E‐W and ≈N‐S orientations occur and are typically the earlier set. Syn‐sedimentary, ≈NW‐SE striking, Triassic normal faults in SE Svalbard aligned with the maximum horizontal stress indicate a Triassic to Cretaceous counterclockwise stress field shift, with additional counterclockwise shifting during Cenozoic dextral transpression between Svalbard and Greenland. Localized joint preferred orientations consistent with both decoupled and coupled transpression occur. Changes in the regional maximum horizontal stress and deformation regime may reflect timing of which plate margin was crucial in influencing Svalbard's plate interior stress field, starting with Triassic Uralian activity to the E, then Cretaceous Amerasian Basin development to the NW, culminating with Cenozoic dextral transpression and transtension to the SW. Article in Journal/Newspaper Arctic Edgeøya Greenland Svalbard Spitsbergen Universitet i Oslo: Digitale utgivelser ved UiO (DUO) Arctic Edgeøya ENVELOPE(22.500,22.500,77.750,77.750) Greenland Svalbard Tectonics 39 4
institution Open Polar
collection Universitet i Oslo: Digitale utgivelser ved UiO (DUO)
op_collection_id ftoslouniv
language English
description Cooling fracture orientations in diabase sills associated with the Cretaceous High Arctic Large Igneous Province and syn‐sedimentary Triassic faults help constrain a model for Svalbard's (NE Barents Shelf) Mesozoic stress field evolution. Fracture data from Edgeøya and adjacent islands in SE Svalbard, from S Spitsbergen, and from literature were used to model preferred orientations and temporal relationships. Orthogonal, roughly E‐W and N‐S, joints and veins in sills from SE Svalbard are interpreted as cooling fractures influenced by the ambient stress field. Aligned preferred orientations within the Triassic host strata are associated with a regional Cretaceous jointing episode driven by sill emplacement and/or erosional unloading. The regional maximum horizontal stress (likely σ1) is inferred to have been parallel to a dominant ≈E‐W set. Spitsbergen's more complex joint patterns are associated with proximity to the Cenozoic West Spitsbergen Fold‐and‐Thrust Belt, but ≈E‐W and ≈N‐S orientations occur and are typically the earlier set. Syn‐sedimentary, ≈NW‐SE striking, Triassic normal faults in SE Svalbard aligned with the maximum horizontal stress indicate a Triassic to Cretaceous counterclockwise stress field shift, with additional counterclockwise shifting during Cenozoic dextral transpression between Svalbard and Greenland. Localized joint preferred orientations consistent with both decoupled and coupled transpression occur. Changes in the regional maximum horizontal stress and deformation regime may reflect timing of which plate margin was crucial in influencing Svalbard's plate interior stress field, starting with Triassic Uralian activity to the E, then Cretaceous Amerasian Basin development to the NW, culminating with Cenozoic dextral transpression and transtension to the SW.
format Article in Journal/Newspaper
author Maher, Harmon
Senger, Kim
Braathen, Alvar
Mulrooney, Mark Joseph
Smyrak-Sikora, Aleksandra
Osmundsen, Per Terje
Ogata, Kei
spellingShingle Maher, Harmon
Senger, Kim
Braathen, Alvar
Mulrooney, Mark Joseph
Smyrak-Sikora, Aleksandra
Osmundsen, Per Terje
Ogata, Kei
Mesozoic-Cenozoic regional stress field evolution in Svalbard
author_facet Maher, Harmon
Senger, Kim
Braathen, Alvar
Mulrooney, Mark Joseph
Smyrak-Sikora, Aleksandra
Osmundsen, Per Terje
Ogata, Kei
author_sort Maher, Harmon
title Mesozoic-Cenozoic regional stress field evolution in Svalbard
title_short Mesozoic-Cenozoic regional stress field evolution in Svalbard
title_full Mesozoic-Cenozoic regional stress field evolution in Svalbard
title_fullStr Mesozoic-Cenozoic regional stress field evolution in Svalbard
title_full_unstemmed Mesozoic-Cenozoic regional stress field evolution in Svalbard
title_sort mesozoic-cenozoic regional stress field evolution in svalbard
publishDate 2020
url http://hdl.handle.net/10852/83184
http://urn.nb.no/URN:NBN:no-85939
https://doi.org/10.1029/2018TC005461
long_lat ENVELOPE(22.500,22.500,77.750,77.750)
geographic Arctic
Edgeøya
Greenland
Svalbard
geographic_facet Arctic
Edgeøya
Greenland
Svalbard
genre Arctic
Edgeøya
Greenland
Svalbard
Spitsbergen
genre_facet Arctic
Edgeøya
Greenland
Svalbard
Spitsbergen
op_source 0278-7407
op_relation NFR/295208
http://urn.nb.no/URN:NBN:no-85939
Maher, Harmon Senger, Kim Braathen, Alvar Mulrooney, Mark Joseph Smyrak-Sikora, Aleksandra Osmundsen, Per Terje Ogata, Kei . Mesozoic-Cenozoic regional stress field evolution in Svalbard. Tectonics. 2020, 39(4)
http://hdl.handle.net/10852/83184
1836153
info:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Tectonics&rft.volume=39&rft.spage=&rft.date=2020
Tectonics
39
4
28
https://doi.org/10.1029/2018TC005461
URN:NBN:no-85939
Fulltext https://www.duo.uio.no/bitstream/handle/10852/83184/5/2018TC005461.pdf
op_doi https://doi.org/10.1029/2018TC005461
container_title Tectonics
container_volume 39
container_issue 4
_version_ 1766342267537195008