Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale

Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium s...

Full description

Bibliographic Details
Published in:Earth-Science Reviews
Main Authors: Obu, Jaroslav, Westermann, Sebastian, Bartsch, Annett, Berdnikov, Nikolai M., Christiansen, Hanne H, Dashtseren, Avirmed, Delaloye, Reynald, Elberling, Bo, Etzelmüller, Bernd, Kholodov, Alexander, Khomutov, Artem V., Kääb, Andreas, Leibman, Marina O., Lewkowicz, Antoni G., Panda, Santosh K., Romanovsky, Vladimir E., Way, Robert G., Westergaard-Nielsen, Andreas, Wu, Tonghua, Yamkhin, Jambaljav, Zou, Defu
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10852/76828
http://urn.nb.no/URN:NBN:no-79944
https://doi.org/10.1016/j.earscirev.2019.04.023
id ftoslouniv:oai:www.duo.uio.no:10852/76828
record_format openpolar
spelling ftoslouniv:oai:www.duo.uio.no:10852/76828 2023-05-15T17:55:23+02:00 Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale Obu, Jaroslav Westermann, Sebastian Bartsch, Annett Berdnikov, Nikolai M. Christiansen, Hanne H Dashtseren, Avirmed Delaloye, Reynald Elberling, Bo Etzelmüller, Bernd Kholodov, Alexander Khomutov, Artem V. Kääb, Andreas Leibman, Marina O. Lewkowicz, Antoni G. Panda, Santosh K. Romanovsky, Vladimir E. Way, Robert G. Westergaard-Nielsen, Andreas Wu, Tonghua Yamkhin, Jambaljav Zou, Defu 2019-06-04T16:01:08Z http://hdl.handle.net/10852/76828 http://urn.nb.no/URN:NBN:no-79944 https://doi.org/10.1016/j.earscirev.2019.04.023 EN eng NFR/239918 ESA/4000116196/15/I-NB http://urn.nb.no/URN:NBN:no-79944 Obu, Jaroslav Westermann, Sebastian Bartsch, Annett Berdnikov, Nikolai M. Christiansen, Hanne H Dashtseren, Avirmed Delaloye, Reynald Elberling, Bo Etzelmüller, Bernd Kholodov, Alexander Khomutov, Artem V. Kääb, Andreas Leibman, Marina O. Lewkowicz, Antoni G. Panda, Santosh K. Romanovsky, Vladimir E. Way, Robert G. Westergaard-Nielsen, Andreas Wu, Tonghua Yamkhin, Jambaljav Zou, Defu . Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews. 2019, 193, 299-316 http://hdl.handle.net/10852/76828 1702760 info:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Earth-Science Reviews&rft.volume=193&rft.spage=299&rft.date=2019 Earth-Science Reviews 193 299 316 https://doi.org/10.1016/j.earscirev.2019.04.023 URN:NBN:no-79944 Fulltext https://www.duo.uio.no/bitstream/handle/10852/76828/1/1-s2.0-S0012825218305907-main.pdf Attribution-NonCommercial-NoDerivatives 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ CC-BY-NC-ND 0012-8252 Journal article Tidsskriftartikkel Peer reviewed PublishedVersion 2019 ftoslouniv https://doi.org/10.1016/j.earscirev.2019.04.023 2020-06-21T08:54:37Z Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium state model for the temperature at the top of the permafrost (TTOP model) for the 2000–2016 period, driven by remotely-sensed land surface temperatures, down-scaled ERA-Interim climate reanalysis data, tundra wetness classes and landcover map from the ESA Landcover Climate Change Initiative (CCI) project. Subgrid variability of ground temperatures due to snow and landcover variability is represented in the model using subpixel statistics. The results are validated against borehole measurements and reviewed regionally. The accuracy of the modelled mean annual ground temperature (MAGT) at the top of the permafrost is ±2 °C when compared to permafrost borehole data. The modelled permafrost area (MAGT <0 °C) covers 13.9 × 106 km2 (ca. 15% of the exposed land area), which is within the range or slightly below the average of previous estimates. The sum of all pixels having isolated patches, sporadic, discontinuous or continuous permafrost (permafrost probability >0) is around 21 × 106 km2 (22% of exposed land area), which is approximately 2 × 106 km2 less than estimated previously. Detailed comparisons at a regional scale show that the model performs well in sparsely vegetated tundra regions and mountains, but is less accurate in densely vegetated boreal spruce and larch forests. Article in Journal/Newspaper permafrost Tundra Universitet i Oslo: Digitale utgivelser ved UiO (DUO) Earth-Science Reviews 193 299 316
institution Open Polar
collection Universitet i Oslo: Digitale utgivelser ved UiO (DUO)
op_collection_id ftoslouniv
language English
description Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium state model for the temperature at the top of the permafrost (TTOP model) for the 2000–2016 period, driven by remotely-sensed land surface temperatures, down-scaled ERA-Interim climate reanalysis data, tundra wetness classes and landcover map from the ESA Landcover Climate Change Initiative (CCI) project. Subgrid variability of ground temperatures due to snow and landcover variability is represented in the model using subpixel statistics. The results are validated against borehole measurements and reviewed regionally. The accuracy of the modelled mean annual ground temperature (MAGT) at the top of the permafrost is ±2 °C when compared to permafrost borehole data. The modelled permafrost area (MAGT <0 °C) covers 13.9 × 106 km2 (ca. 15% of the exposed land area), which is within the range or slightly below the average of previous estimates. The sum of all pixels having isolated patches, sporadic, discontinuous or continuous permafrost (permafrost probability >0) is around 21 × 106 km2 (22% of exposed land area), which is approximately 2 × 106 km2 less than estimated previously. Detailed comparisons at a regional scale show that the model performs well in sparsely vegetated tundra regions and mountains, but is less accurate in densely vegetated boreal spruce and larch forests.
format Article in Journal/Newspaper
author Obu, Jaroslav
Westermann, Sebastian
Bartsch, Annett
Berdnikov, Nikolai M.
Christiansen, Hanne H
Dashtseren, Avirmed
Delaloye, Reynald
Elberling, Bo
Etzelmüller, Bernd
Kholodov, Alexander
Khomutov, Artem V.
Kääb, Andreas
Leibman, Marina O.
Lewkowicz, Antoni G.
Panda, Santosh K.
Romanovsky, Vladimir E.
Way, Robert G.
Westergaard-Nielsen, Andreas
Wu, Tonghua
Yamkhin, Jambaljav
Zou, Defu
spellingShingle Obu, Jaroslav
Westermann, Sebastian
Bartsch, Annett
Berdnikov, Nikolai M.
Christiansen, Hanne H
Dashtseren, Avirmed
Delaloye, Reynald
Elberling, Bo
Etzelmüller, Bernd
Kholodov, Alexander
Khomutov, Artem V.
Kääb, Andreas
Leibman, Marina O.
Lewkowicz, Antoni G.
Panda, Santosh K.
Romanovsky, Vladimir E.
Way, Robert G.
Westergaard-Nielsen, Andreas
Wu, Tonghua
Yamkhin, Jambaljav
Zou, Defu
Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale
author_facet Obu, Jaroslav
Westermann, Sebastian
Bartsch, Annett
Berdnikov, Nikolai M.
Christiansen, Hanne H
Dashtseren, Avirmed
Delaloye, Reynald
Elberling, Bo
Etzelmüller, Bernd
Kholodov, Alexander
Khomutov, Artem V.
Kääb, Andreas
Leibman, Marina O.
Lewkowicz, Antoni G.
Panda, Santosh K.
Romanovsky, Vladimir E.
Way, Robert G.
Westergaard-Nielsen, Andreas
Wu, Tonghua
Yamkhin, Jambaljav
Zou, Defu
author_sort Obu, Jaroslav
title Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale
title_short Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale
title_full Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale
title_fullStr Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale
title_full_unstemmed Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale
title_sort northern hemisphere permafrost map based on ttop modelling for 2000–2016 at 1 km2 scale
publishDate 2019
url http://hdl.handle.net/10852/76828
http://urn.nb.no/URN:NBN:no-79944
https://doi.org/10.1016/j.earscirev.2019.04.023
genre permafrost
Tundra
genre_facet permafrost
Tundra
op_source 0012-8252
op_relation NFR/239918
ESA/4000116196/15/I-NB
http://urn.nb.no/URN:NBN:no-79944
Obu, Jaroslav Westermann, Sebastian Bartsch, Annett Berdnikov, Nikolai M. Christiansen, Hanne H Dashtseren, Avirmed Delaloye, Reynald Elberling, Bo Etzelmüller, Bernd Kholodov, Alexander Khomutov, Artem V. Kääb, Andreas Leibman, Marina O. Lewkowicz, Antoni G. Panda, Santosh K. Romanovsky, Vladimir E. Way, Robert G. Westergaard-Nielsen, Andreas Wu, Tonghua Yamkhin, Jambaljav Zou, Defu . Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews. 2019, 193, 299-316
http://hdl.handle.net/10852/76828
1702760
info:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Earth-Science Reviews&rft.volume=193&rft.spage=299&rft.date=2019
Earth-Science Reviews
193
299
316
https://doi.org/10.1016/j.earscirev.2019.04.023
URN:NBN:no-79944
Fulltext https://www.duo.uio.no/bitstream/handle/10852/76828/1/1-s2.0-S0012825218305907-main.pdf
op_rights Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.1016/j.earscirev.2019.04.023
container_title Earth-Science Reviews
container_volume 193
container_start_page 299
op_container_end_page 316
_version_ 1766163322435010560