Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland

Potential field analysis is known to suffer from the problem of "non-uniqueness" in solutions. Gravity data interpretation is a prime example. Anomalous bodies can be detected from the gravity field, but information regarding size, depth, and geometry is not easily discerned. Recently, gra...

Full description

Bibliographic Details
Main Author: Corr, Michael Eamonn
Format: Master Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10852/69978
http://urn.nb.no/URN:NBN:no-73113
id ftoslouniv:oai:www.duo.uio.no:10852/69978
record_format openpolar
spelling ftoslouniv:oai:www.duo.uio.no:10852/69978 2023-05-15T16:47:32+02:00 Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland Corr, Michael Eamonn 2019 http://hdl.handle.net/10852/69978 http://urn.nb.no/URN:NBN:no-73113 eng eng http://urn.nb.no/URN:NBN:no-73113 Corr, Michael Eamonn. Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland. Master thesis, University of Oslo, 2019 http://hdl.handle.net/10852/69978 URN:NBN:no-73113 Fulltext https://www.duo.uio.no/bitstream/handle/10852/69978/11/MCORR_MS_Thesis_June12019.pdf Coordinate Transformations Seismic Tomography Lithosphere Geophysics Upper Mantle North Atlantic GOCE Geodynamics Hotspot Gravitational Gradients Iceland Gravity Master thesis Masteroppgave 2019 ftoslouniv 2020-06-21T08:53:43Z Potential field analysis is known to suffer from the problem of "non-uniqueness" in solutions. Gravity data interpretation is a prime example. Anomalous bodies can be detected from the gravity field, but information regarding size, depth, and geometry is not easily discerned. Recently, gravity anomaly studies are augmented by satellite gravity gradient observations, which have the abilities to increase apparent sensitivity of gravity models. This study focuses on the theory of gravity and gravity gradients to implement them for the interpretation of anomalous bodies and reduce uncertainty by linking gravity studies with seismic models. The first part of the study involves developing techniques and testing them with known synthetic examples of a buried horizontal cylinder and a buried solid sphere of anomalous density. The gravity anomalies and gravity gradients are calculated and interpreted, especially in relation to the applicability and influence of edge effects. The second part is to extend this technique to a natural example, the North Atlantic centered by Iceland and the corresponding strong gravity anomaly. A density distribution of the lithosphere and upper mantle is modelled based on the S-wave velocity tomography model SL2013sv (Schaeffer and Lebedev, 2013) and 1D reference density model AK135 (Kennett et al., 1995) using a simple relation between velocity and density (Karato, 1993). Using this density distribution of the mantle, gravity anomalies and their gradients are calculated. The results are compared to observed gravity anomaly models and gravity gradients measured and calculated by the European Space Agency's "Gravity field and steady-state Ocean Circulation Explorer" (GOCE) satellite, respectively. Inferences are made about the lithosphere and upper mantle structure and the benefits of gravity gradients analysis are discussed. Master Thesis Iceland North Atlantic Universitet i Oslo: Digitale utgivelser ved UiO (DUO) Kennett ENVELOPE(-65.167,-65.167,-67.117,-67.117)
institution Open Polar
collection Universitet i Oslo: Digitale utgivelser ved UiO (DUO)
op_collection_id ftoslouniv
language English
topic Coordinate Transformations
Seismic Tomography
Lithosphere
Geophysics
Upper Mantle
North Atlantic
GOCE
Geodynamics
Hotspot
Gravitational Gradients
Iceland
Gravity
spellingShingle Coordinate Transformations
Seismic Tomography
Lithosphere
Geophysics
Upper Mantle
North Atlantic
GOCE
Geodynamics
Hotspot
Gravitational Gradients
Iceland
Gravity
Corr, Michael Eamonn
Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland
topic_facet Coordinate Transformations
Seismic Tomography
Lithosphere
Geophysics
Upper Mantle
North Atlantic
GOCE
Geodynamics
Hotspot
Gravitational Gradients
Iceland
Gravity
description Potential field analysis is known to suffer from the problem of "non-uniqueness" in solutions. Gravity data interpretation is a prime example. Anomalous bodies can be detected from the gravity field, but information regarding size, depth, and geometry is not easily discerned. Recently, gravity anomaly studies are augmented by satellite gravity gradient observations, which have the abilities to increase apparent sensitivity of gravity models. This study focuses on the theory of gravity and gravity gradients to implement them for the interpretation of anomalous bodies and reduce uncertainty by linking gravity studies with seismic models. The first part of the study involves developing techniques and testing them with known synthetic examples of a buried horizontal cylinder and a buried solid sphere of anomalous density. The gravity anomalies and gravity gradients are calculated and interpreted, especially in relation to the applicability and influence of edge effects. The second part is to extend this technique to a natural example, the North Atlantic centered by Iceland and the corresponding strong gravity anomaly. A density distribution of the lithosphere and upper mantle is modelled based on the S-wave velocity tomography model SL2013sv (Schaeffer and Lebedev, 2013) and 1D reference density model AK135 (Kennett et al., 1995) using a simple relation between velocity and density (Karato, 1993). Using this density distribution of the mantle, gravity anomalies and their gradients are calculated. The results are compared to observed gravity anomaly models and gravity gradients measured and calculated by the European Space Agency's "Gravity field and steady-state Ocean Circulation Explorer" (GOCE) satellite, respectively. Inferences are made about the lithosphere and upper mantle structure and the benefits of gravity gradients analysis are discussed.
format Master Thesis
author Corr, Michael Eamonn
author_facet Corr, Michael Eamonn
author_sort Corr, Michael Eamonn
title Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland
title_short Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland
title_full Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland
title_fullStr Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland
title_full_unstemmed Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland
title_sort satellite gravity data and lithospheric structure: a study of the north atlantic lithosphere beneath iceland
publishDate 2019
url http://hdl.handle.net/10852/69978
http://urn.nb.no/URN:NBN:no-73113
long_lat ENVELOPE(-65.167,-65.167,-67.117,-67.117)
geographic Kennett
geographic_facet Kennett
genre Iceland
North Atlantic
genre_facet Iceland
North Atlantic
op_relation http://urn.nb.no/URN:NBN:no-73113
Corr, Michael Eamonn. Satellite Gravity Data and Lithospheric Structure: A study of the North Atlantic lithosphere beneath Iceland. Master thesis, University of Oslo, 2019
http://hdl.handle.net/10852/69978
URN:NBN:no-73113
Fulltext https://www.duo.uio.no/bitstream/handle/10852/69978/11/MCORR_MS_Thesis_June12019.pdf
_version_ 1766037620077363200