Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm

Background Gyrodactylus salaris is a directly transmitted ectoparasite that reproduces in situ on its fish host. Wild Norwegian (East Atlantic) salmon stocks are thought to be especially susceptible to the parasite due to lack of co-adaptation, contrary to Baltic salmon stocks. This study i) identif...

Full description

Bibliographic Details
Published in:Parasites & Vectors
Main Authors: Ramírez, Raúl, Bakke, Tor A, Harris, Philip D
Format: Article in Journal/Newspaper
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10852/47426
http://urn.nb.no/URN:NBN:no-51526
https://doi.org/10.1186/s13071-015-0981-4
id ftoslouniv:oai:www.duo.uio.no:10852/47426
record_format openpolar
spelling ftoslouniv:oai:www.duo.uio.no:10852/47426 2023-05-15T13:21:18+02:00 Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm Ramírez, Raúl Bakke, Tor A Harris, Philip D 2015 http://hdl.handle.net/10852/47426 http://urn.nb.no/URN:NBN:no-51526 https://doi.org/10.1186/s13071-015-0981-4 eng eng http://urn.nb.no/URN:NBN:no-51526 Parasites & Vectors. 2015 Jul 25;8(1):392 http://hdl.handle.net/10852/47426 http://dx.doi.org/10.1186/s13071-015-0981-4 URN:NBN:no-51526 Fulltext https://www.duo.uio.no/bitstream/handle/10852/47426/1/13071_2015_Article_981.pdf Ramírez et al; licensee BioMed Central Ltd. Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ CC-BY Journal article Tidsskriftartikkel Peer reviewed PublishedVersion 2015 ftoslouniv https://doi.org/10.1186/s13071-015-0981-4 2020-06-21T08:49:02Z Background Gyrodactylus salaris is a directly transmitted ectoparasite that reproduces in situ on its fish host. Wild Norwegian (East Atlantic) salmon stocks are thought to be especially susceptible to the parasite due to lack of co-adaptation, contrary to Baltic salmon stocks. This study i) identifies whether time- and density-dependent mechanisms in gyrodactylid population growth exist in G. salaris-Atlantic salmon interactions and ii) based on differences between Norwegian and Baltic stocks, determines whether the ‘Atlantic susceptible, Baltic resistant’ paradigm holds as an example of local adaptation. Methods A total of 18 datasets of G. salaris population growth on individually isolated Atlantic salmon (12 different stocks) infected with three parasite strains were re-analysed using a Bayesian approach. Datasets included over 2000 observations of 388 individual fish. Results The best fitting model of population growth was time-limited; parasite population growth rate declined consistently from the beginning of infection. We found no evidence of exponential population growth in any dataset. In some stocks, a density dependence in the size of the initial inoculum limited the maximum rate of parasite population growth. There is no evidence to support the hypothesis that all Norwegian and Scottish Atlantic salmon stocks are equally susceptible to G. salaris, while Baltic stocks control and limit infections due to co-evolution. Northern and Western Norwegian as well as the Scottish Shin stocks, support higher initial parasite population growth rates than Baltic, South-eastern Norwegian, or the Scottish Conon stocks, and several Norwegian stocks tested (Akerselva, Altaelva, Lierelva, Numedalslågen), and the Scottish stocks (i.e. Conon, Shin), were able to limit infections after 40–50 days. No significant differences in performance of the three parasite strains (Batnfjordselva, Figga, and Lierelva), or the two parasite mitochondrial haplotypes (A and F) were observed. Conclusions Our study shows a spectrum of growth rates, with some fish of the South-eastern Norwegian stocks sustaining parasite population growth rates overlapping those seen on Baltic Neva and Indalsälv stocks. This observation is inconsistent with the ‘Baltic-resistant, Atlantic-susceptible’ hypothesis, but suggests heterogeneity, perhaps linked to other host resistance genes driven by selection for local disease syndromes. Article in Journal/Newspaper Altaelva Atlantic salmon Salmo salar Universitet i Oslo: Digitale utgivelser ved UiO (DUO) Altaelva ENVELOPE(23.383,23.383,69.967,69.967) Neva ENVELOPE(15.407,15.407,68.061,68.061) Parasites & Vectors 8 1
institution Open Polar
collection Universitet i Oslo: Digitale utgivelser ved UiO (DUO)
op_collection_id ftoslouniv
language English
description Background Gyrodactylus salaris is a directly transmitted ectoparasite that reproduces in situ on its fish host. Wild Norwegian (East Atlantic) salmon stocks are thought to be especially susceptible to the parasite due to lack of co-adaptation, contrary to Baltic salmon stocks. This study i) identifies whether time- and density-dependent mechanisms in gyrodactylid population growth exist in G. salaris-Atlantic salmon interactions and ii) based on differences between Norwegian and Baltic stocks, determines whether the ‘Atlantic susceptible, Baltic resistant’ paradigm holds as an example of local adaptation. Methods A total of 18 datasets of G. salaris population growth on individually isolated Atlantic salmon (12 different stocks) infected with three parasite strains were re-analysed using a Bayesian approach. Datasets included over 2000 observations of 388 individual fish. Results The best fitting model of population growth was time-limited; parasite population growth rate declined consistently from the beginning of infection. We found no evidence of exponential population growth in any dataset. In some stocks, a density dependence in the size of the initial inoculum limited the maximum rate of parasite population growth. There is no evidence to support the hypothesis that all Norwegian and Scottish Atlantic salmon stocks are equally susceptible to G. salaris, while Baltic stocks control and limit infections due to co-evolution. Northern and Western Norwegian as well as the Scottish Shin stocks, support higher initial parasite population growth rates than Baltic, South-eastern Norwegian, or the Scottish Conon stocks, and several Norwegian stocks tested (Akerselva, Altaelva, Lierelva, Numedalslågen), and the Scottish stocks (i.e. Conon, Shin), were able to limit infections after 40–50 days. No significant differences in performance of the three parasite strains (Batnfjordselva, Figga, and Lierelva), or the two parasite mitochondrial haplotypes (A and F) were observed. Conclusions Our study shows a spectrum of growth rates, with some fish of the South-eastern Norwegian stocks sustaining parasite population growth rates overlapping those seen on Baltic Neva and Indalsälv stocks. This observation is inconsistent with the ‘Baltic-resistant, Atlantic-susceptible’ hypothesis, but suggests heterogeneity, perhaps linked to other host resistance genes driven by selection for local disease syndromes.
format Article in Journal/Newspaper
author Ramírez, Raúl
Bakke, Tor A
Harris, Philip D
spellingShingle Ramírez, Raúl
Bakke, Tor A
Harris, Philip D
Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm
author_facet Ramírez, Raúl
Bakke, Tor A
Harris, Philip D
author_sort Ramírez, Raúl
title Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm
title_short Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm
title_full Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm
title_fullStr Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm
title_full_unstemmed Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm
title_sort population regulation in gyrodactylus salaris – atlantic salmon (salmo salar l.) interactions: testing the paradigm
publishDate 2015
url http://hdl.handle.net/10852/47426
http://urn.nb.no/URN:NBN:no-51526
https://doi.org/10.1186/s13071-015-0981-4
long_lat ENVELOPE(23.383,23.383,69.967,69.967)
ENVELOPE(15.407,15.407,68.061,68.061)
geographic Altaelva
Neva
geographic_facet Altaelva
Neva
genre Altaelva
Atlantic salmon
Salmo salar
genre_facet Altaelva
Atlantic salmon
Salmo salar
op_relation http://urn.nb.no/URN:NBN:no-51526
Parasites & Vectors. 2015 Jul 25;8(1):392
http://hdl.handle.net/10852/47426
http://dx.doi.org/10.1186/s13071-015-0981-4
URN:NBN:no-51526
Fulltext https://www.duo.uio.no/bitstream/handle/10852/47426/1/13071_2015_Article_981.pdf
op_rights Ramírez et al; licensee BioMed Central Ltd.
Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
op_rightsnorm CC-BY
op_doi https://doi.org/10.1186/s13071-015-0981-4
container_title Parasites & Vectors
container_volume 8
container_issue 1
_version_ 1766358626723692544