CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
We measured CO2 and CH4 fluxes using chambers and eddy covariance (only CO2) from a moist moss tundra in Svalbard. The average net ecosystem exchange (NEE) during the summer (9 June–31 August) was negative (sink), with −0.139 ± 0.032 µmol m−2 s−1 corresponding to −11.8 g C m−2 for the whole summer....
Published in: | Biogeosciences |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications under license by EGU – European Geosciences Union GmbH
2022
|
Subjects: | |
Online Access: | http://hdl.handle.net/10852/100930 https://doi.org/10.5194/bg-19-3921-2022 |
id |
ftoslouniv:oai:www.duo.uio.no:10852/100930 |
---|---|
record_format |
openpolar |
spelling |
ftoslouniv:oai:www.duo.uio.no:10852/100930 2023-05-15T15:17:21+02:00 CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard ENEngelskEnglishCO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard Lindroth, Anders Pirk, Norbert Jónsdóttir, Ingibjörg S. Stiegler, Christian Klemedtsson, Leif Nilsson, Mats B. 2022-11-11T12:20:37Z http://hdl.handle.net/10852/100930 https://doi.org/10.5194/bg-19-3921-2022 EN eng Copernicus Publications under license by EGU – European Geosciences Union GmbH Lindroth, Anders Pirk, Norbert Jónsdóttir, Ingibjörg S. Stiegler, Christian Klemedtsson, Leif Nilsson, Mats B. . CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard. Biogeosciences. 2022, 19(16), 3921-3934 http://hdl.handle.net/10852/100930 2072426 info:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biogeosciences&rft.volume=19&rft.spage=3921&rft.date=2022 Biogeosciences 19 16 3921 3934 https://doi.org/10.5194/bg-19-3921-2022 Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ CC-BY 1726-4170 Journal article Tidsskriftartikkel Peer reviewed PublishedVersion 2022 ftoslouniv https://doi.org/10.5194/bg-19-3921-2022 2023-03-08T23:36:45Z We measured CO2 and CH4 fluxes using chambers and eddy covariance (only CO2) from a moist moss tundra in Svalbard. The average net ecosystem exchange (NEE) during the summer (9 June–31 August) was negative (sink), with −0.139 ± 0.032 µmol m−2 s−1 corresponding to −11.8 g C m−2 for the whole summer. The cumulated NEE over the whole growing season (day no. 160 to 284) was −2.5 g C m−2. The CH4 flux during the summer period showed a large spatial and temporal variability. The mean value of all 214 samples was 0.000511 ± 0.000315 µmol m−2 s−1, which corresponds to a growing season estimate of 0.04 to 0.16 g CH4 m−2. Thus, we find that this moss tundra ecosystem is closely in balance with the atmosphere during the growing season when regarding exchanges of CO2 and CH4. The sink of CO2 and the source of CH4 are small in comparison with other tundra ecosystems in the high Arctic. Air temperature, soil moisture and the greenness index contributed significantly to explaining the variation in ecosystem respiration (Reco), while active layer depth, soil moisture and the greenness index were the variables that best explained CH4 emissions. An estimate of temperature sensitivity of Reco and gross primary productivity (GPP) showed that the sensitivity is slightly higher for GPP than for Reco in the interval 0–4.5 ∘C; thereafter, the difference is small up to about 6 ∘C and then begins to rise rapidly for Reco. The consequence of this, for a small increase in air temperature of 1∘ (all other variables assumed unchanged), was that the respiration increased more than photosynthesis turning the small sink into a small source (4.5 g C m−2) during the growing season. Thus, we cannot rule out that the reason why the moss tundra is close to balance today is an effect of the warming that has already taken place in Svalbard. Article in Journal/Newspaper Arctic Svalbard Tundra Universitet i Oslo: Digitale utgivelser ved UiO (DUO) Arctic Kapp Linné ENVELOPE(13.621,13.621,78.063,78.063) Svalbard Biogeosciences 19 16 3921 3934 |
institution |
Open Polar |
collection |
Universitet i Oslo: Digitale utgivelser ved UiO (DUO) |
op_collection_id |
ftoslouniv |
language |
English |
description |
We measured CO2 and CH4 fluxes using chambers and eddy covariance (only CO2) from a moist moss tundra in Svalbard. The average net ecosystem exchange (NEE) during the summer (9 June–31 August) was negative (sink), with −0.139 ± 0.032 µmol m−2 s−1 corresponding to −11.8 g C m−2 for the whole summer. The cumulated NEE over the whole growing season (day no. 160 to 284) was −2.5 g C m−2. The CH4 flux during the summer period showed a large spatial and temporal variability. The mean value of all 214 samples was 0.000511 ± 0.000315 µmol m−2 s−1, which corresponds to a growing season estimate of 0.04 to 0.16 g CH4 m−2. Thus, we find that this moss tundra ecosystem is closely in balance with the atmosphere during the growing season when regarding exchanges of CO2 and CH4. The sink of CO2 and the source of CH4 are small in comparison with other tundra ecosystems in the high Arctic. Air temperature, soil moisture and the greenness index contributed significantly to explaining the variation in ecosystem respiration (Reco), while active layer depth, soil moisture and the greenness index were the variables that best explained CH4 emissions. An estimate of temperature sensitivity of Reco and gross primary productivity (GPP) showed that the sensitivity is slightly higher for GPP than for Reco in the interval 0–4.5 ∘C; thereafter, the difference is small up to about 6 ∘C and then begins to rise rapidly for Reco. The consequence of this, for a small increase in air temperature of 1∘ (all other variables assumed unchanged), was that the respiration increased more than photosynthesis turning the small sink into a small source (4.5 g C m−2) during the growing season. Thus, we cannot rule out that the reason why the moss tundra is close to balance today is an effect of the warming that has already taken place in Svalbard. |
format |
Article in Journal/Newspaper |
author |
Lindroth, Anders Pirk, Norbert Jónsdóttir, Ingibjörg S. Stiegler, Christian Klemedtsson, Leif Nilsson, Mats B. |
spellingShingle |
Lindroth, Anders Pirk, Norbert Jónsdóttir, Ingibjörg S. Stiegler, Christian Klemedtsson, Leif Nilsson, Mats B. CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard |
author_facet |
Lindroth, Anders Pirk, Norbert Jónsdóttir, Ingibjörg S. Stiegler, Christian Klemedtsson, Leif Nilsson, Mats B. |
author_sort |
Lindroth, Anders |
title |
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard |
title_short |
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard |
title_full |
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard |
title_fullStr |
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard |
title_full_unstemmed |
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard |
title_sort |
co2 and ch4 exchanges between moist moss tundra and atmosphere on kapp linné, svalbard |
publisher |
Copernicus Publications under license by EGU – European Geosciences Union GmbH |
publishDate |
2022 |
url |
http://hdl.handle.net/10852/100930 https://doi.org/10.5194/bg-19-3921-2022 |
long_lat |
ENVELOPE(13.621,13.621,78.063,78.063) |
geographic |
Arctic Kapp Linné Svalbard |
geographic_facet |
Arctic Kapp Linné Svalbard |
genre |
Arctic Svalbard Tundra |
genre_facet |
Arctic Svalbard Tundra |
op_source |
1726-4170 |
op_relation |
Lindroth, Anders Pirk, Norbert Jónsdóttir, Ingibjörg S. Stiegler, Christian Klemedtsson, Leif Nilsson, Mats B. . CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard. Biogeosciences. 2022, 19(16), 3921-3934 http://hdl.handle.net/10852/100930 2072426 info:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biogeosciences&rft.volume=19&rft.spage=3921&rft.date=2022 Biogeosciences 19 16 3921 3934 https://doi.org/10.5194/bg-19-3921-2022 |
op_rights |
Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.5194/bg-19-3921-2022 |
container_title |
Biogeosciences |
container_volume |
19 |
container_issue |
16 |
container_start_page |
3921 |
op_container_end_page |
3934 |
_version_ |
1766347594017013760 |