Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka)
Antarctic sea ice forms a critical part of the Southern Ocean and global climate system. The behaviour of Antarctic sea ice throughout the last glacial-interglacial (G-IG) cycle (12 000–130 000 years) allows us to investigate the interactions between sea ice and climate under a large range of mean c...
Published in: | Climate of the Past |
---|---|
Main Authors: | , , , , |
Format: | Other/Unknown Material |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://oskar-bordeaux.fr/handle/20.500.12278/170275 https://hdl.handle.net/20.500.12278/170275 https://doi.org/10.5194/cp-18-1815-2022 |
id |
ftoskarbordeaux:oai:oskar-bordeaux.fr:20.500.12278/170275 |
---|---|
record_format |
openpolar |
spelling |
ftoskarbordeaux:oai:oskar-bordeaux.fr:20.500.12278/170275 2023-05-15T13:39:15+02:00 Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka) CHADWICK, Matthew CROSTA, Xavier ESPER, Oliver THOLE, Lena KOHFELD, Karen E 2022-08-10 https://oskar-bordeaux.fr/handle/20.500.12278/170275 https://hdl.handle.net/20.500.12278/170275 https://doi.org/10.5194/cp-18-1815-2022 EN eng 1814-9324 https://oskar-bordeaux.fr/handle/20.500.12278/170275 doi:10.5194/cp-18-1815-2022 Attribution 3.0 United States open http://creativecommons.org/licenses/by/3.0/us/ Pas de Licence CC CC-BY Sciences de l'environnement Article de revue 2022 ftoskarbordeaux https://doi.org/20.500.12278/170275 https://doi.org/10.5194/cp-18-1815-2022 2022-11-22T23:30:32Z Antarctic sea ice forms a critical part of the Southern Ocean and global climate system. The behaviour of Antarctic sea ice throughout the last glacial-interglacial (G-IG) cycle (12 000–130 000 years) allows us to investigate the interactions between sea ice and climate under a large range of mean climate states. Understanding both temporal and spatial variations in Antarctic sea ice across a G-IG cycle is crucial to a better understanding of the G-IG regulation of atmospheric CO2, ocean circulation, nutrient cycling and productivity. This study presents 28 published qualitative and quantitative estimates of G-IG sea ice from 24 marine sediment cores and an Antarctic ice core. Sea ice is reconstructed from the sediment core records using diatom assemblages and from the ice core record using sea-salt sodium flux. Whilst all regions of the Southern Ocean display the same overall pattern in G-IG sea-ice variations, the magnitudes and timings vary between regions. Sea-ice cover is most sensitive to changing climate in the regions of high sea-ice outflow from the Weddell Sea and Ross Sea gyres, as indicated by the greatest magnitude changes in sea ice in these areas. In contrast the Scotia Sea sea-ice cover is much more resilient to moderate climatic warming, likely due to the meltwater stratification from high iceberg flux through “iceberg alley” helping to sustain high sea-ice cover outside of full glacial intervals. The differing sensitivities of sea ice to climatic shifts between different regions of the Southern Ocean has important implications for the spatial pattern of nutrient supply and primary productivity, which subsequently impact carbon uptake and atmospheric CO2 concentrations changes across a G-IG cycle. Other/Unknown Material Antarc* Antarctic ice core Iceberg* Ross Sea Scotia Sea Sea ice Southern Ocean Weddell Sea OSKAR Bordeaux (Open Science Knowledge ARchive) Antarctic Ross Sea Scotia Sea Southern Ocean Weddell Weddell Sea Climate of the Past 18 8 1815 1829 |
institution |
Open Polar |
collection |
OSKAR Bordeaux (Open Science Knowledge ARchive) |
op_collection_id |
ftoskarbordeaux |
language |
English |
topic |
Sciences de l'environnement |
spellingShingle |
Sciences de l'environnement CHADWICK, Matthew CROSTA, Xavier ESPER, Oliver THOLE, Lena KOHFELD, Karen E Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka) |
topic_facet |
Sciences de l'environnement |
description |
Antarctic sea ice forms a critical part of the Southern Ocean and global climate system. The behaviour of Antarctic sea ice throughout the last glacial-interglacial (G-IG) cycle (12 000–130 000 years) allows us to investigate the interactions between sea ice and climate under a large range of mean climate states. Understanding both temporal and spatial variations in Antarctic sea ice across a G-IG cycle is crucial to a better understanding of the G-IG regulation of atmospheric CO2, ocean circulation, nutrient cycling and productivity. This study presents 28 published qualitative and quantitative estimates of G-IG sea ice from 24 marine sediment cores and an Antarctic ice core. Sea ice is reconstructed from the sediment core records using diatom assemblages and from the ice core record using sea-salt sodium flux. Whilst all regions of the Southern Ocean display the same overall pattern in G-IG sea-ice variations, the magnitudes and timings vary between regions. Sea-ice cover is most sensitive to changing climate in the regions of high sea-ice outflow from the Weddell Sea and Ross Sea gyres, as indicated by the greatest magnitude changes in sea ice in these areas. In contrast the Scotia Sea sea-ice cover is much more resilient to moderate climatic warming, likely due to the meltwater stratification from high iceberg flux through “iceberg alley” helping to sustain high sea-ice cover outside of full glacial intervals. The differing sensitivities of sea ice to climatic shifts between different regions of the Southern Ocean has important implications for the spatial pattern of nutrient supply and primary productivity, which subsequently impact carbon uptake and atmospheric CO2 concentrations changes across a G-IG cycle. |
format |
Other/Unknown Material |
author |
CHADWICK, Matthew CROSTA, Xavier ESPER, Oliver THOLE, Lena KOHFELD, Karen E |
author_facet |
CHADWICK, Matthew CROSTA, Xavier ESPER, Oliver THOLE, Lena KOHFELD, Karen E |
author_sort |
CHADWICK, Matthew |
title |
Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka) |
title_short |
Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka) |
title_full |
Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka) |
title_fullStr |
Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka) |
title_full_unstemmed |
Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka) |
title_sort |
compilation of southern ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka) |
publishDate |
2022 |
url |
https://oskar-bordeaux.fr/handle/20.500.12278/170275 https://hdl.handle.net/20.500.12278/170275 https://doi.org/10.5194/cp-18-1815-2022 |
geographic |
Antarctic Ross Sea Scotia Sea Southern Ocean Weddell Weddell Sea |
geographic_facet |
Antarctic Ross Sea Scotia Sea Southern Ocean Weddell Weddell Sea |
genre |
Antarc* Antarctic ice core Iceberg* Ross Sea Scotia Sea Sea ice Southern Ocean Weddell Sea |
genre_facet |
Antarc* Antarctic ice core Iceberg* Ross Sea Scotia Sea Sea ice Southern Ocean Weddell Sea |
op_relation |
1814-9324 https://oskar-bordeaux.fr/handle/20.500.12278/170275 doi:10.5194/cp-18-1815-2022 |
op_rights |
Attribution 3.0 United States open http://creativecommons.org/licenses/by/3.0/us/ Pas de Licence CC |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/20.500.12278/170275 https://doi.org/10.5194/cp-18-1815-2022 |
container_title |
Climate of the Past |
container_volume |
18 |
container_issue |
8 |
container_start_page |
1815 |
op_container_end_page |
1829 |
_version_ |
1766116455211859968 |