Geochronology and paleoclimatic implications of the last deglaciation 2 of the Mauna Kea Ice Cap, Hawaii

This is the author's final peer-reviewed manuscript. It contains no copyediting. We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subse...

Full description

Bibliographic Details
Main Authors: Anslow, Faron S., Clark, Peter U., 1956-, Durz, Mark D., Hostetler, Steven W.
Other Authors: Geosciences
Format: Article in Journal/Newspaper
Language:English
unknown
Published: Elsevier
Subjects:
Online Access:https://ir.library.oregonstate.edu/concern/articles/hh63sx357
id ftoregonstate:ir.library.oregonstate.edu:hh63sx357
record_format openpolar
spelling ftoregonstate:ir.library.oregonstate.edu:hh63sx357 2024-09-15T18:11:44+00:00 Geochronology and paleoclimatic implications of the last deglaciation 2 of the Mauna Kea Ice Cap, Hawaii Anslow, Faron S. Clark, Peter U., 1956- Durz, Mark D. Hostetler, Steven W. Geosciences https://ir.library.oregonstate.edu/concern/articles/hh63sx357 English [eng] eng unknown Elsevier https://ir.library.oregonstate.edu/concern/articles/hh63sx357 Copyright Not Evaluated Article ftoregonstate 2024-07-22T18:06:04Z This is the author's final peer-reviewed manuscript. It contains no copyediting. We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5 ± 2.5 ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3 km upslope for ~5.1 kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4 ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6 ± 1.9 ka, corresponding to a rapid resumption of the AMOC and onset of the Bølling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5 ± 1 oC, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the ... Article in Journal/Newspaper Ice cap North Atlantic ScholarsArchive@OSU (Oregon State University)
institution Open Polar
collection ScholarsArchive@OSU (Oregon State University)
op_collection_id ftoregonstate
language English
unknown
description This is the author's final peer-reviewed manuscript. It contains no copyediting. We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5 ± 2.5 ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3 km upslope for ~5.1 kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4 ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6 ± 1.9 ka, corresponding to a rapid resumption of the AMOC and onset of the Bølling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5 ± 1 oC, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the ...
author2 Geosciences
format Article in Journal/Newspaper
author Anslow, Faron S.
Clark, Peter U., 1956-
Durz, Mark D.
Hostetler, Steven W.
spellingShingle Anslow, Faron S.
Clark, Peter U., 1956-
Durz, Mark D.
Hostetler, Steven W.
Geochronology and paleoclimatic implications of the last deglaciation 2 of the Mauna Kea Ice Cap, Hawaii
author_facet Anslow, Faron S.
Clark, Peter U., 1956-
Durz, Mark D.
Hostetler, Steven W.
author_sort Anslow, Faron S.
title Geochronology and paleoclimatic implications of the last deglaciation 2 of the Mauna Kea Ice Cap, Hawaii
title_short Geochronology and paleoclimatic implications of the last deglaciation 2 of the Mauna Kea Ice Cap, Hawaii
title_full Geochronology and paleoclimatic implications of the last deglaciation 2 of the Mauna Kea Ice Cap, Hawaii
title_fullStr Geochronology and paleoclimatic implications of the last deglaciation 2 of the Mauna Kea Ice Cap, Hawaii
title_full_unstemmed Geochronology and paleoclimatic implications of the last deglaciation 2 of the Mauna Kea Ice Cap, Hawaii
title_sort geochronology and paleoclimatic implications of the last deglaciation 2 of the mauna kea ice cap, hawaii
publisher Elsevier
url https://ir.library.oregonstate.edu/concern/articles/hh63sx357
genre Ice cap
North Atlantic
genre_facet Ice cap
North Atlantic
op_relation https://ir.library.oregonstate.edu/concern/articles/hh63sx357
op_rights Copyright Not Evaluated
_version_ 1810449313372831744