Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic

Recent studies have suggested that the marine contribution of methane from shallow regions and melting marine-terminating glaciers may have been underestimated. Here we report on methane sources and potential sinks associated with methane seeps in Cumberland Bay, South Georgia's largest fjord s...

Full description

Bibliographic Details
Main Authors: Geprägs, Patrizia, Torres, Marta E., Mau, Susan, Kasten, Sabine, Römer, Miriam, Bohrmann, Gerhard
Format: Article in Journal/Newspaper
Language:English
unknown
Published: John Wiley & Sons, Inc.
Subjects:
Online Access:https://ir.library.oregonstate.edu/concern/articles/6d570206k
id ftoregonstate:ir.library.oregonstate.edu:6d570206k
record_format openpolar
spelling ftoregonstate:ir.library.oregonstate.edu:6d570206k 2024-09-15T17:40:44+00:00 Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic Geprägs, Patrizia Torres, Marta E. Mau, Susan Kasten, Sabine Römer, Miriam Bohrmann, Gerhard https://ir.library.oregonstate.edu/concern/articles/6d570206k English [eng] eng unknown John Wiley & Sons, Inc. https://ir.library.oregonstate.edu/concern/articles/6d570206k Copyright Not Evaluated Article ftoregonstate 2024-07-22T18:06:02Z Recent studies have suggested that the marine contribution of methane from shallow regions and melting marine-terminating glaciers may have been underestimated. Here we report on methane sources and potential sinks associated with methane seeps in Cumberland Bay, South Georgia's largest fjord system. The average organic carbon content in the upper 8 m of the sediment is around 0.65 wt %; this observation combined with Parasound data suggest that the methane gas accumulations probably originate from peat-bearing sediments currently located several tens of meters below the seafloor. Only one of our cores indicates upward advection; instead most of the methane is transported via diffusion. Sulfate and methane flux estimates indicate that a large fraction of methane is consumed by anaerobic oxidation of methane (AOM). Carbon cycling at the sulfate-methane transition (SMT) results in a marked fractionation of the δ¹³C-CH₄ from an estimated source value of −65‰ to a value as low as −96‰ just below the SMT. Methane concentrations in sediments are high, especially close to the seepage sites (∼40 mM); however, concentrations in the water column are relatively low (max. 58 nM) and can be observed only close to the seafloor. Methane is trapped in the lowermost water mass; however, measured microbial oxidation rates reveal very low activity with an average turnover of 3.1 years. We therefore infer that methane must be transported out of the bay in the bottom water layer. A mean sea-air flux of only 0.005 nM/m² s confirms that almost no methane reaches the atmosphere. Article in Journal/Newspaper Antarc* Antarctic ScholarsArchive@OSU (Oregon State University)
institution Open Polar
collection ScholarsArchive@OSU (Oregon State University)
op_collection_id ftoregonstate
language English
unknown
description Recent studies have suggested that the marine contribution of methane from shallow regions and melting marine-terminating glaciers may have been underestimated. Here we report on methane sources and potential sinks associated with methane seeps in Cumberland Bay, South Georgia's largest fjord system. The average organic carbon content in the upper 8 m of the sediment is around 0.65 wt %; this observation combined with Parasound data suggest that the methane gas accumulations probably originate from peat-bearing sediments currently located several tens of meters below the seafloor. Only one of our cores indicates upward advection; instead most of the methane is transported via diffusion. Sulfate and methane flux estimates indicate that a large fraction of methane is consumed by anaerobic oxidation of methane (AOM). Carbon cycling at the sulfate-methane transition (SMT) results in a marked fractionation of the δ¹³C-CH₄ from an estimated source value of −65‰ to a value as low as −96‰ just below the SMT. Methane concentrations in sediments are high, especially close to the seepage sites (∼40 mM); however, concentrations in the water column are relatively low (max. 58 nM) and can be observed only close to the seafloor. Methane is trapped in the lowermost water mass; however, measured microbial oxidation rates reveal very low activity with an average turnover of 3.1 years. We therefore infer that methane must be transported out of the bay in the bottom water layer. A mean sea-air flux of only 0.005 nM/m² s confirms that almost no methane reaches the atmosphere.
format Article in Journal/Newspaper
author Geprägs, Patrizia
Torres, Marta E.
Mau, Susan
Kasten, Sabine
Römer, Miriam
Bohrmann, Gerhard
spellingShingle Geprägs, Patrizia
Torres, Marta E.
Mau, Susan
Kasten, Sabine
Römer, Miriam
Bohrmann, Gerhard
Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic
author_facet Geprägs, Patrizia
Torres, Marta E.
Mau, Susan
Kasten, Sabine
Römer, Miriam
Bohrmann, Gerhard
author_sort Geprägs, Patrizia
title Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic
title_short Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic
title_full Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic
title_fullStr Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic
title_full_unstemmed Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic
title_sort carbon cycling fed by methane seepage at the shallow cumberland bay, south georgia, sub-antarctic
publisher John Wiley & Sons, Inc.
url https://ir.library.oregonstate.edu/concern/articles/6d570206k
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_relation https://ir.library.oregonstate.edu/concern/articles/6d570206k
op_rights Copyright Not Evaluated
_version_ 1810486764863750144