Seasonal and inter-annual variability of air-sea CO2 fluxes and seawater carbonate chemistry in the Southern North Sea

peer reviewed A 3D coupled biogeochemical–hydrodynamic model (MIRO-CO2&CO) is implemented in the English Channel (ECH) and the Southern Bight of the North Sea (SBNS) to estimate the present-day spatio-temporal distribution of air–sea CO2 fluxes, surface water partial pressure of CO2 (pCO2) and o...

Full description

Bibliographic Details
Published in:Progress in Oceanography
Main Authors: Gypens, N., Lacroix, G., Lancelot, C., Borges, Alberto
Other Authors: FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Format: Article in Journal/Newspaper
Language:English
Published: Pergamon Press - An Imprint of Elsevier Science 2011
Subjects:
Online Access:https://orbi.uliege.be/handle/2268/83543
https://orbi.uliege.be/bitstream/2268/83543/1/gypens_et_al_2011.pdf
https://doi.org/10.1016/j.pocean.2010.11.004
Description
Summary:peer reviewed A 3D coupled biogeochemical–hydrodynamic model (MIRO-CO2&CO) is implemented in the English Channel (ECH) and the Southern Bight of the North Sea (SBNS) to estimate the present-day spatio-temporal distribution of air–sea CO2 fluxes, surface water partial pressure of CO2 (pCO2) and other components of the carbonate system (pH, saturation state of calcite (Xca) and of aragonite (Xar)), and the main drivers of their variability. Over the 1994–2004 period, air–sea CO2 fluxes show significant interannual variability, with oscillations between net annual CO2 sinks and sources. The inter annual variability of air–sea CO2 fluxes simulated in the SBNS is controlled primarily by river loads and changes of biological activities (net autotrophy in spring and early summer, and net heterotrophy in winter and autumn), while in areas less influenced by river inputs such as the ECH, the inter annual variations of air–sea CO2 fluxes are mainly due to changes in sea surface temperature and in near-surface wind strength and direction. In the ECH, the decrease of pH, of Xca and of Xar follows the one expected from the increase of atmospheric CO2 (ocean acidification), but the decrease of these quantities in the SBNS during the considered time period is faster than the one expected from ocean acidification alone. This seems to be related to a general pattern of decreasing nutrient river loads and net ecosystem production (NEP) in the SBNS. Annually, the combined effect of carbon and nutrient loads leads to an increase of the sink of CO2 in the ECH and the SBNS, but the impact of the river loads varies spatially and is stronger in river plumes and nearshore waters than in offshore waters. The impact of organic and inorganic carbon (C) inputs is mainly confined to the coast and generates a source of CO2 to the atmosphere and low pH, of Xca and of Xar values in estuarine plumes, while the impact of nutrient loads, highest than the effect of C inputs in coastal nearshore waters, also propagates offshore and, by ...