Modelling the evolution of climate and sea level over the third millennium (MILMO)

A new three-dimensional Earth system model of intermediate complexity was developed. This model, named LOVECLIM, consists of five major components representing the atmosphere (ECBilt), the ocean and sea ice (CLIO), the terrestrial biosphere (VECODE), the oceanic carbon cycle (LOCH) and the Greenland...

Full description

Bibliographic Details
Main Authors: Fichefet, Thierry, Driesschaert, Emmanuelle, Goosse, Hugues, Huybrechts, Philippe, Janssens, Ives, Mouchet, Anne, Munhoven, Guy
Format: Report
Language:English
Published: BELSPO 2007
Subjects:
Online Access:https://orbi.uliege.be/handle/2268/61873
Description
Summary:A new three-dimensional Earth system model of intermediate complexity was developed. This model, named LOVECLIM, consists of five major components representing the atmosphere (ECBilt), the ocean and sea ice (CLIO), the terrestrial biosphere (VECODE), the oceanic carbon cycle (LOCH) and the Greenland and Antarctic ice sheets (AGISM). It also includes a global glacier-melt algorithm which is run in off-line mode. It is worth mentioning that there are very few models of this type worldwide. ECBilt is a quasi-geostrophic atmospheric model with 3 levels and a T21 horizontal resolution. It includes simple parameterisations of the diabatic heating processes and an explicit representation of the hydrological cycle. Cloud cover is prescribed according to present-day climatology. CLIO is a primitive-equation, free-surface ocean general circulation model coupled to a thermodynamic–dynamic sea-ice model. Its horizontal resolution is 3° × 3°, and there are 20 levels in the ocean. VECODE is a reduced-form model of vegetation dynamics and of the terrestrial carbon cycle. It simulates the dynamics of two main terrestrial plant functional types (trees and grassland) at the same resolution as that of ECBilt. LOCH is a comprehensive model of the oceanic carbon cycle that takes into account both the solubility and biological pumps. The version utilised here has the same resolution as the one of CLIO, which greatly facilitates the coupling between both models. Finally, AGISM is composed of a three-dimensional thermomechanical model of the ice sheet flow, a visco-elastic bedrock model and a model of the mass balance at the ice–atmosphere and ice–ocean interfaces. The Antarctic ice-sheet module also contains a model of the ice-shelf dynamics to enable interactions with the ocean and migration of the grounding line. For both ice sheets, calculations are made on a 10 km × 10 km resolution grid with 31 sigma levels. The performance of LOVECLIM was assessed by conducting ensemble simulations over the last few centuries. Starting from ...