Reconstruction of the Gulf Stream variability since 1940 using a variational inverse method and study of its interaction with the North Atlantic Oscillation

In this study, the Gulf Stream’s (GS) response to the North Atlantic oscillation (NAO) is investigated by generating an observation-based reconstruction of the GS path between 70° and 50°W since 1940. Using in situ data from WOD, SeaDataNet, ICES, Hydrobase3 and ARGO floats, a harmonized database of...

Full description

Bibliographic Details
Main Author: Watelet, Sylvain
Other Authors: Beckers, Jean-Marie, GeoHydrodynamics and Environment Research
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: ULiège - Université de Liège 2021
Subjects:
NAO
Online Access:https://orbi.uliege.be/handle/2268/254728
https://orbi.uliege.be/bitstream/2268/254728/1/Sylvain_Watelet_Thesis_v2_elec.pdf
Description
Summary:In this study, the Gulf Stream’s (GS) response to the North Atlantic oscillation (NAO) is investigated by generating an observation-based reconstruction of the GS path between 70° and 50°W since 1940. Using in situ data from WOD, SeaDataNet, ICES, Hydrobase3 and ARGO floats, a harmonized database of more than 40 million entries is created. A variational inverse method implemented in the software DIVA (Data-Interpolating Variational Analysis) allows the production of time series of monthly analyses of temperature and salinity over the North Atlantic (NA). These time series are used to derive two GS indices: the GS North Wall (GSNW) index for position and the GS Delta (GSD) index as a proxy of its transport. We find a significant correlation (0.37) between the GSNW and the NAO at a lag of 1 year (NAO preceding GS) since 1940 and significant correlations (0.50 and 0.43) between the GSD and the NAO at lags of 0 and 2 years between 1960–2014. We suggest this 2-year lag is due to Rossby waves, generated by NAO variability, that propagate westwards from the center of the NA. This is the first reconstruction of GS indices over a 75-year period based on an objective method using the largest in situ dataset so far. This enhanced tracking and quantification of the GS confirms and extends the temporal scope of this property: NAO+ phases lead to a stronger and more northward GS, and conversely for NAO− phases. The teleconnections between the NAO and the variability of the GS were extensively studied these last years, often exhibiting time delays between both phenomena. These time lags, usually ranging between 0–2 years, are sometimes explained by the hypothesis of baroclinic Rossby waves generated by the NAO in the central NA and travelling westward before interacting with the GS. In this study, we use a numerical hindcast at an eddy-resolving resolution (1/12°) from the DRAKKAR project to examine the occurrence and properties of such Rossby waves between 1970–2015, thus including a large pre-TOPEX/Poseidon period. Through ...