Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem
peer reviewed Abstract. We present a multiyear time series of column abundances of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) measured using Fourier transform infrared (FTIR) spectrometers at 10 sites affiliated with the Network for the Detection of Atmospheric Composition Chang...
Published in: | Atmospheric Chemistry and Physics |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
European Geosciences Union
2020
|
Subjects: | |
Online Access: | https://orbi.uliege.be/handle/2268/252208 https://orbi.uliege.be/bitstream/2268/252208/1/acp-20-12813-2020.pdf https://doi.org/10.5194/acp-20-12813-2020 |
id |
ftorbi:oai:orbi.ulg.ac.be:2268/252208 |
---|---|
record_format |
openpolar |
spelling |
ftorbi:oai:orbi.ulg.ac.be:2268/252208 2024-11-03T14:53:49+00:00 Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem Lutsch, E. Strong, K. Jones, D. B. A. Blumenstock, T. Conway, S. Fisher, J. A. Hannigan, J. W. Hase, F. Kasai, Y. Mahieu, Emmanuel Makarova, M. Morino, I. Nagahama, T. Notholt, J. Ortega, I. Palm, M. Poberovskii, A. V. Sussmann, R. Warneke, T. Sphères - SPHERES 2020-11-05 https://orbi.uliege.be/handle/2268/252208 https://orbi.uliege.be/bitstream/2268/252208/1/acp-20-12813-2020.pdf https://doi.org/10.5194/acp-20-12813-2020 en eng European Geosciences Union https://acp.copernicus.org/articles/20/12813/2020/ urn:issn:1680-7316 urn:issn:1680-7324 https://orbi.uliege.be/handle/2268/252208 info:hdl:2268/252208 open access http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Atmospheric Chemistry and Physics, 20 (21), 12813-12851 (2020-11-05) air pollution FTIR remote sensing fire tracers Physical chemical mathematical & earth Sciences Earth sciences & physical geography Physique chimie mathématiques & sciences de la terre Sciences de la terre & géographie physique journal article http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article peer reviewed 2020 ftorbi https://doi.org/10.5194/acp-20-12813-2020 2024-10-21T15:24:55Z peer reviewed Abstract. We present a multiyear time series of column abundances of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) measured using Fourier transform infrared (FTIR) spectrometers at 10 sites affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). Six are high-latitude sites: Eureka, Ny-Ålesund, Thule, Kiruna, Poker Flat, and St. Petersburg, and four are midlatitude sites: Zugspitze, Jungfraujoch, Toronto, and Rikubetsu. For each site, the interannual trends and seasonal variabilities of the CO time series are accounted for, allowing background column amounts to be determined. Enhancements above the seasonal background were used to identify possible wildfire pollution events. Since the abundance of each trace gas emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of CO to the long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution. A GEOS-Chem tagged CO simulation with Global Fire Assimilation System (GFASv1.2) biomass burning emissions was used to determine the source attribution of CO concentrations at each site from 2003 to 2018. For each detected wildfire pollution event, FLEXPART back-trajectory simulations were performed to determine the transport times of the smoke plume. Accounting for the loss of each species during transport, the enhancement ratios of HCN and C2H6 with respect to CO were converted to emission ratios. We report mean emission ratios with respect to CO for HCN and C2H6 of 0.0047 and 0.0092, respectively, with a standard deviation of 0.0014 and 0.0046, respectively, determined from 23 boreal North American wildfire events. Similarly, we report mean emission ratios for HCN and C2H6 of 0.0049 and 0.0100, respectively, with a standard deviation of 0.0025 and 0.0042, respectively, determined from 39 boreal Asian wildfire events. The agreement of our emission ratios with literature values illustrates the capability of ... Article in Journal/Newspaper Arctic Kiruna Ny Ålesund Ny-Ålesund University of Liège: ORBi (Open Repository and Bibliography) Arctic Ny-Ålesund Kiruna Eureka ENVELOPE(-85.940,-85.940,79.990,79.990) Atmospheric Chemistry and Physics 20 21 12813 12851 |
institution |
Open Polar |
collection |
University of Liège: ORBi (Open Repository and Bibliography) |
op_collection_id |
ftorbi |
language |
English |
topic |
air pollution FTIR remote sensing fire tracers Physical chemical mathematical & earth Sciences Earth sciences & physical geography Physique chimie mathématiques & sciences de la terre Sciences de la terre & géographie physique |
spellingShingle |
air pollution FTIR remote sensing fire tracers Physical chemical mathematical & earth Sciences Earth sciences & physical geography Physique chimie mathématiques & sciences de la terre Sciences de la terre & géographie physique Lutsch, E. Strong, K. Jones, D. B. A. Blumenstock, T. Conway, S. Fisher, J. A. Hannigan, J. W. Hase, F. Kasai, Y. Mahieu, Emmanuel Makarova, M. Morino, I. Nagahama, T. Notholt, J. Ortega, I. Palm, M. Poberovskii, A. V. Sussmann, R. Warneke, T. Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem |
topic_facet |
air pollution FTIR remote sensing fire tracers Physical chemical mathematical & earth Sciences Earth sciences & physical geography Physique chimie mathématiques & sciences de la terre Sciences de la terre & géographie physique |
description |
peer reviewed Abstract. We present a multiyear time series of column abundances of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) measured using Fourier transform infrared (FTIR) spectrometers at 10 sites affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). Six are high-latitude sites: Eureka, Ny-Ålesund, Thule, Kiruna, Poker Flat, and St. Petersburg, and four are midlatitude sites: Zugspitze, Jungfraujoch, Toronto, and Rikubetsu. For each site, the interannual trends and seasonal variabilities of the CO time series are accounted for, allowing background column amounts to be determined. Enhancements above the seasonal background were used to identify possible wildfire pollution events. Since the abundance of each trace gas emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of CO to the long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution. A GEOS-Chem tagged CO simulation with Global Fire Assimilation System (GFASv1.2) biomass burning emissions was used to determine the source attribution of CO concentrations at each site from 2003 to 2018. For each detected wildfire pollution event, FLEXPART back-trajectory simulations were performed to determine the transport times of the smoke plume. Accounting for the loss of each species during transport, the enhancement ratios of HCN and C2H6 with respect to CO were converted to emission ratios. We report mean emission ratios with respect to CO for HCN and C2H6 of 0.0047 and 0.0092, respectively, with a standard deviation of 0.0014 and 0.0046, respectively, determined from 23 boreal North American wildfire events. Similarly, we report mean emission ratios for HCN and C2H6 of 0.0049 and 0.0100, respectively, with a standard deviation of 0.0025 and 0.0042, respectively, determined from 39 boreal Asian wildfire events. The agreement of our emission ratios with literature values illustrates the capability of ... |
author2 |
Sphères - SPHERES |
format |
Article in Journal/Newspaper |
author |
Lutsch, E. Strong, K. Jones, D. B. A. Blumenstock, T. Conway, S. Fisher, J. A. Hannigan, J. W. Hase, F. Kasai, Y. Mahieu, Emmanuel Makarova, M. Morino, I. Nagahama, T. Notholt, J. Ortega, I. Palm, M. Poberovskii, A. V. Sussmann, R. Warneke, T. |
author_facet |
Lutsch, E. Strong, K. Jones, D. B. A. Blumenstock, T. Conway, S. Fisher, J. A. Hannigan, J. W. Hase, F. Kasai, Y. Mahieu, Emmanuel Makarova, M. Morino, I. Nagahama, T. Notholt, J. Ortega, I. Palm, M. Poberovskii, A. V. Sussmann, R. Warneke, T. |
author_sort |
Lutsch, E. |
title |
Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem |
title_short |
Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem |
title_full |
Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem |
title_fullStr |
Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem |
title_full_unstemmed |
Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem |
title_sort |
detection and attribution of wildfire pollution in the arctic and northern midlatitudes using a network of fourier-transform infrared spectrometers and geos-chem |
publisher |
European Geosciences Union |
publishDate |
2020 |
url |
https://orbi.uliege.be/handle/2268/252208 https://orbi.uliege.be/bitstream/2268/252208/1/acp-20-12813-2020.pdf https://doi.org/10.5194/acp-20-12813-2020 |
long_lat |
ENVELOPE(-85.940,-85.940,79.990,79.990) |
geographic |
Arctic Ny-Ålesund Kiruna Eureka |
geographic_facet |
Arctic Ny-Ålesund Kiruna Eureka |
genre |
Arctic Kiruna Ny Ålesund Ny-Ålesund |
genre_facet |
Arctic Kiruna Ny Ålesund Ny-Ålesund |
op_source |
Atmospheric Chemistry and Physics, 20 (21), 12813-12851 (2020-11-05) |
op_relation |
https://acp.copernicus.org/articles/20/12813/2020/ urn:issn:1680-7316 urn:issn:1680-7324 https://orbi.uliege.be/handle/2268/252208 info:hdl:2268/252208 |
op_rights |
open access http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/acp-20-12813-2020 |
container_title |
Atmospheric Chemistry and Physics |
container_volume |
20 |
container_issue |
21 |
container_start_page |
12813 |
op_container_end_page |
12851 |
_version_ |
1814714376142192640 |