Rapid expansion of Greenland’s low-permeability ice slabs

peer reviewed In recent decades, meltwater runoff has accelerated to become the dominant mechanism for mass loss in the Greenland ice sheet1,2,3. In Greenland’s high-elevation interior, porous snow and firn accumulate; these can absorb surface meltwater and inhibit runoff4, but this buffering effect...

Full description

Bibliographic Details
Published in:Nature
Main Authors: MacFerrin, Michael, Machguth, Horst, van As, D., Charalampidis, Charalampos, Stevens, C., Heilig, Achim, Vandecrux, Baptiste, Langen, Peter, Mottram, R., Fettweis, Xavier, van den Broeke, M., Pfeffer, W., Moussavi, M., Abdalati, Waleed
Format: Article in Journal/Newspaper
Language:English
Published: Nature Publishing Group 2019
Subjects:
Online Access:https://orbi.uliege.be/handle/2268/239564
https://orbi.uliege.be/bitstream/2268/239564/1/s41586-019-1550-3.pdf
https://doi.org/10.1038/s41586-019-1550-3
id ftorbi:oai:orbi.ulg.ac.be:2268/239564
record_format openpolar
spelling ftorbi:oai:orbi.ulg.ac.be:2268/239564 2024-04-21T08:03:23+00:00 Rapid expansion of Greenland’s low-permeability ice slabs MacFerrin, Michael Machguth, Horst van As, D. Charalampidis, Charalampos Stevens, C. Heilig, Achim Vandecrux, Baptiste Langen, Peter Mottram, R. Fettweis, Xavier van den Broeke, M. Pfeffer, W. Moussavi, M. Abdalati, Waleed 2019-09-18 https://orbi.uliege.be/handle/2268/239564 https://orbi.uliege.be/bitstream/2268/239564/1/s41586-019-1550-3.pdf https://doi.org/10.1038/s41586-019-1550-3 en eng Nature Publishing Group https://www.nature.com/articles/s41586-019-1550-3 urn:issn:0028-0836 urn:issn:1476-4687 https://orbi.uliege.be/handle/2268/239564 info:hdl:2268/239564 https://orbi.uliege.be/bitstream/2268/239564/1/s41586-019-1550-3.pdf doi:10.1038/s41586-019-1550-3 scopus-id:2-s2.0-85072381625 info:pmid:31534244 open access http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Nature, 573 (2019-09-18) Physical chemical mathematical & earth Sciences Earth sciences & physical geography Physique chimie mathématiques & sciences de la terre Sciences de la terre & géographie physique journal article http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article peer reviewed 2019 ftorbi https://doi.org/10.1038/s41586-019-1550-3 2024-03-27T14:54:04Z peer reviewed In recent decades, meltwater runoff has accelerated to become the dominant mechanism for mass loss in the Greenland ice sheet1,2,3. In Greenland’s high-elevation interior, porous snow and firn accumulate; these can absorb surface meltwater and inhibit runoff4, but this buffering effect is limited if enough water refreezes near the surface to restrict percolation5,6. However, the influence of refreezing on runoff from Greenland remains largely unquantified. Here we use firn cores, radar observations and regional climate models to show that recent increases in meltwater have resulted in the formation of metres-thick, low-permeability ‘ice slabs’ that have expanded the Greenland ice sheet’s total runoff area by 26 ± 3 per cent since 2001. Although runoff from the top of ice slabs has added less than one millimetre to global sea-level rise so far, this contribution will grow substantially as ice slabs expand inland in a warming climate. Runoff over ice slabs is set to contribute 7 to 33 millimetres and 17 to 74 millimetres to global sea-level rise by 2100 under moderate- and high-emissions scenarios, respectively—approximately double the estimated runoff from Greenland’s high-elevation interior, as predicted by surface mass balance models without ice slabs. Ice slabs will have an important role in enhancing surface meltwater feedback processes, fundamentally altering the ice sheet’s present and future hydrology. Article in Journal/Newspaper Greenland University of Liège: ORBi (Open Repository and Bibliography) Nature 573 7774 403 407
institution Open Polar
collection University of Liège: ORBi (Open Repository and Bibliography)
op_collection_id ftorbi
language English
topic Physical
chemical
mathematical & earth Sciences
Earth sciences & physical geography
Physique
chimie
mathématiques & sciences de la terre
Sciences de la terre & géographie physique
spellingShingle Physical
chemical
mathematical & earth Sciences
Earth sciences & physical geography
Physique
chimie
mathématiques & sciences de la terre
Sciences de la terre & géographie physique
MacFerrin, Michael
Machguth, Horst
van As, D.
Charalampidis, Charalampos
Stevens, C.
Heilig, Achim
Vandecrux, Baptiste
Langen, Peter
Mottram, R.
Fettweis, Xavier
van den Broeke, M.
Pfeffer, W.
Moussavi, M.
Abdalati, Waleed
Rapid expansion of Greenland’s low-permeability ice slabs
topic_facet Physical
chemical
mathematical & earth Sciences
Earth sciences & physical geography
Physique
chimie
mathématiques & sciences de la terre
Sciences de la terre & géographie physique
description peer reviewed In recent decades, meltwater runoff has accelerated to become the dominant mechanism for mass loss in the Greenland ice sheet1,2,3. In Greenland’s high-elevation interior, porous snow and firn accumulate; these can absorb surface meltwater and inhibit runoff4, but this buffering effect is limited if enough water refreezes near the surface to restrict percolation5,6. However, the influence of refreezing on runoff from Greenland remains largely unquantified. Here we use firn cores, radar observations and regional climate models to show that recent increases in meltwater have resulted in the formation of metres-thick, low-permeability ‘ice slabs’ that have expanded the Greenland ice sheet’s total runoff area by 26 ± 3 per cent since 2001. Although runoff from the top of ice slabs has added less than one millimetre to global sea-level rise so far, this contribution will grow substantially as ice slabs expand inland in a warming climate. Runoff over ice slabs is set to contribute 7 to 33 millimetres and 17 to 74 millimetres to global sea-level rise by 2100 under moderate- and high-emissions scenarios, respectively—approximately double the estimated runoff from Greenland’s high-elevation interior, as predicted by surface mass balance models without ice slabs. Ice slabs will have an important role in enhancing surface meltwater feedback processes, fundamentally altering the ice sheet’s present and future hydrology.
format Article in Journal/Newspaper
author MacFerrin, Michael
Machguth, Horst
van As, D.
Charalampidis, Charalampos
Stevens, C.
Heilig, Achim
Vandecrux, Baptiste
Langen, Peter
Mottram, R.
Fettweis, Xavier
van den Broeke, M.
Pfeffer, W.
Moussavi, M.
Abdalati, Waleed
author_facet MacFerrin, Michael
Machguth, Horst
van As, D.
Charalampidis, Charalampos
Stevens, C.
Heilig, Achim
Vandecrux, Baptiste
Langen, Peter
Mottram, R.
Fettweis, Xavier
van den Broeke, M.
Pfeffer, W.
Moussavi, M.
Abdalati, Waleed
author_sort MacFerrin, Michael
title Rapid expansion of Greenland’s low-permeability ice slabs
title_short Rapid expansion of Greenland’s low-permeability ice slabs
title_full Rapid expansion of Greenland’s low-permeability ice slabs
title_fullStr Rapid expansion of Greenland’s low-permeability ice slabs
title_full_unstemmed Rapid expansion of Greenland’s low-permeability ice slabs
title_sort rapid expansion of greenland’s low-permeability ice slabs
publisher Nature Publishing Group
publishDate 2019
url https://orbi.uliege.be/handle/2268/239564
https://orbi.uliege.be/bitstream/2268/239564/1/s41586-019-1550-3.pdf
https://doi.org/10.1038/s41586-019-1550-3
genre Greenland
genre_facet Greenland
op_source Nature, 573 (2019-09-18)
op_relation https://www.nature.com/articles/s41586-019-1550-3
urn:issn:0028-0836
urn:issn:1476-4687
https://orbi.uliege.be/handle/2268/239564
info:hdl:2268/239564
https://orbi.uliege.be/bitstream/2268/239564/1/s41586-019-1550-3.pdf
doi:10.1038/s41586-019-1550-3
scopus-id:2-s2.0-85072381625
info:pmid:31534244
op_rights open access
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1038/s41586-019-1550-3
container_title Nature
container_volume 573
container_issue 7774
container_start_page 403
op_container_end_page 407
_version_ 1796943250353815552