Summary: | Fluctuations in greenhouse gases (GHGs) concentration alter the energetic budget of the climate system. There is high confidence that natural systems related to snow, ice and frozen ground (including permafrost) are affected. Nitrous oxide (N2O) is one of the potent GHG naturally present in the atmosphere, but witch has seen his concentration growing since industrial era. N2O has a lifetime in the atmosphere of 114 years and a global warming potential (GWP) of 298 to be compared to carbon dioxide that has a GWP of 1. N2O is also describe as the dominant ozone-depleting substance emitted in the 21st Century. Yet, there are still large uncertainties and gaps in the understanding of the cycle of this compound through the ocean and particularly in sea ice. Sources and sinks of N2O are therefore still poorly quantified. The main processes (with the exception of transport processes) involved in the N2O cycle within the aquatic environment are nitrification and denitrification. To date, only one study by Randall et al. present N2O measurements in sea ice. Randall et al. pointed out that sea ice formation and melt has the potential to generate sea-air or air-sea fluxes of N2O, respectively.
|