Annual dynamics of pCO2 within bulk sea ice and related CO2 fluxes at Cape Evans (Antarctica)

Sea ice is a biome actively participating in the regional cycling of CO2 as both a source and a sink at different times of the year. In the frame of the YROSIAE project (Year-Round Ocean-Sea-Ice-Atmosphere Exchanges), annual dynamics of sea ice pCO2 was compared with CO2 fluxes measured by automated...

Full description

Bibliographic Details
Main Authors: Van Der Linden, Fanny, Champenois, Willy, Heinesch, Bernard, Moreau, Sébastien, Kotovitch, Marie, Carnat, Gauhtier, Zhou, Jiayun, Haskell, Tim, Tison, Jean-Louis, Delille, Bruno
Other Authors: FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Format: Conference Object
Language:English
Published: 2016
Subjects:
Online Access:https://orbi.uliege.be/handle/2268/199117
Description
Summary:Sea ice is a biome actively participating in the regional cycling of CO2 as both a source and a sink at different times of the year. In the frame of the YROSIAE project (Year-Round Ocean-Sea-Ice-Atmosphere Exchanges), annual dynamics of sea ice pCO2 was compared with CO2 fluxes measured by automated accumulation chambers at Cape Evans (Ross Island, Antarctica). Results confirmed a general trend of brine pCO2 supersaturation with respect to the atmosphere during the late winter (concentration of dissolved inorganic carbon - DIC - in brine and brine expulsion in the brine skim) leading to CO2 degassing, and undersaturation during the spring (carbon-uptake by autotrophs and brine dilution) leading to atmospheric CO2 uptake. Despite high primary production at the bottom of the ice in spring, DIC profiles suggest that sea ice as a whole appears to be net heterotrophic. Still, sea ice absorbs CO2 from the atmosphere, as a result of physical processes. Some variability in the CO2 fluxes (both in magnitude and sign) could not be explained by variability in sea ice pCO2 but rather seemed driven by variability in atmospheric conditions and sea ice surface properties. For instance, in late spring, CO2 fluxes showed a diurnal variability (from CO2 degassing to uptake) related to atmospheric temperature variations. Large and episodic CO2 fluxes were systematically positively correlated with strong wind events, and large CO2 degassing was observed over thin, wet and salty snow cover.