Detection of past and future atmospheric circulation changes over the North Atlantic region with the help of an automatic circulation type classification

Future projections of the atmospheric circulation over the Northern Hemisphere high latitudes, especially the North Atlantic, have high uncertainties and some of the projected changes are opposed to circulation changes that have been observed since the 2000s. In this thesis, we focus on three partic...

Full description

Bibliographic Details
Main Author: Belleflamme, Alexandre
Other Authors: Erpicum, Michel, Fettweis, Xavier, Laboratoire de Climatologie et Topoclimatologie
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: ULiège - Université de Liège 2015
Subjects:
Online Access:https://orbi.uliege.be/handle/2268/178963
Description
Summary:Future projections of the atmospheric circulation over the Northern Hemisphere high latitudes, especially the North Atlantic, have high uncertainties and some of the projected changes are opposed to circulation changes that have been observed since the 2000s. In this thesis, we focus on three particular aspects of the past and projected future summertime atmospheric circulation over the broader North Atlantic region. First, we analyse whether the 2007-2012 summertime anticyclonic anomaly over the Beaufort Sea, the Canadian Arctic Archipelago, and Greenland might rather be due to global warming or to the internal variability of the atmospheric circulation by putting it in perspective with the circulation variability over the last 150 years given by five reanalysis datasets. Then, this analysis is extended for the future circulation projected towards 2100 by CMIP3 and CMIP5 General Circulation Models (GCMs) over Greenland. Finally, we evaluate the impact of the uncertainties of the future atmospheric circulation projections on the mitigating or enhancing influence of the summertime circulation changes on temperature and precipitation over Europe. We use an automatic circulation type classification to analyse in detail the atmospheric circulation changes by grouping similar daily SLP (mean sea level pressure) or Z500 (500 hPa geopotential height) fields into homogeneous circulation types. It appears that the choice of the index, on the basis of which the days are grouped together, strongly influences the characteristics of the circulation types and the kinds of circulation changes that can be detected. In comparison with Euclidean distance and pressure gradient-based indices, correlation-based indices, especially the Spearman rank correlation, are the most suitable indices when focusing on the circulation pattern. Over the Arctic region, four periods with circulation anomalies similar to that of 2007-2012 (i.e. a summertime anticyclonic anomaly over the western Arctic region) have been detected over the last 150 ...