Investigating commercially relevant packaging solutions to improve storage stability of mechanically filleted Atlantic mackerel (Scomber scombrus) produced under industrial conditions

Publisher's version (útgefin grein) This study investigated the efficacy of three commercially relevant packaging methods (vacuum with water glazing VAC-G; vacuum with seawater VAC-S; shatter-layer packaging SL) to improve frozen storage stability of mechanically filleted Atlantic mackerel at −...

Full description

Bibliographic Details
Published in:European Food Research and Technology
Main Authors: Sone, Izumi, Sveinsdóttir, Hildur I., Stefánsson, Guðmundur, Larsson, Karin, Undeland, Ingrid, Skåra, Torstein, Romotowska, Paulina E., Karlsdottir, Magnea
Other Authors: Matvæla- og næringarfræðideild (HÍ), Faculty of Food Science and Nutrition (UI), Heilbrigðisvísindasvið (HÍ), School of Health Sciences (UI), Háskóli Íslands, University of Iceland
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2020
Subjects:
Online Access:https://hdl.handle.net/20.500.11815/2393
https://doi.org/10.1007/s00217-020-03434-x
Description
Summary:Publisher's version (útgefin grein) This study investigated the efficacy of three commercially relevant packaging methods (vacuum with water glazing VAC-G; vacuum with seawater VAC-S; shatter-layer packaging SL) to improve frozen storage stability of mechanically filleted Atlantic mackerel at − 25 °C, in comparison to water glazing alone (GL) and storage as whole unglazed, block frozen fish. Besides proximate composition and pH of raw material, quality changes were analysed by free fatty acid content (FFA), water holding capacity (WHC), cooking yield, lipid oxidation (lipid hydroperoxides, PV; non-protein bound thiobarbituric acid reactive substances, TBARS) and sensory profiles of cooked samples after 3.5, 8, 10 and 12 months of frozen storage. Vacuum-packaging was effective in mitigating the PV and TBARS as well as rancid odour and flavour. The inclusion of seawater in VAC-S altered the sensory textural attributes of the mackerel fillet to be more juicy, tender and soft and increased the attribute of salty flavour in the sample. SL delayed rancid odour and flavour by 2 months compared to GL. Processing of mackerel under industrial conditions, including filleting, handling, double-freezing and glazing accelerated the formation of FFA as well as losses of WHC and cooking yield in the fillet regardless the packaging methods. Open Access funding provided by Nofima the food research institute. The authors would like to gratefully acknowledge the financial support of Nordic Innovation (MAR14306). Prof. María Guðjónsdóttir at University of Iceland is acknowledged for her valuable feedback on the manuscript. Peer Reviewed