Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling?

The delivery of volcanogenic sulphur into the upper atmosphere by explosive eruptions is known to cause significant temporary climate cooling. Therefore, phreatomagmatic and phreatoplinian eruptions occurring during the final rifting stages of active flood basalt provinces provide a potent mechanism...

Full description

Bibliographic Details
Published in:Lithos
Main Authors: Jolley, David W., Widdowson, Mike
Format: Article in Journal/Newspaper
Language:unknown
Published: 2005
Subjects:
Online Access:https://oro.open.ac.uk/6911/
id ftopenunivgb:oai:oro.open.ac.uk:6911
record_format openpolar
spelling ftopenunivgb:oai:oro.open.ac.uk:6911 2024-06-23T07:52:39+00:00 Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling? Jolley, David W. Widdowson, Mike 2005-02 https://oro.open.ac.uk/6911/ unknown Jolley, David W. and Widdowson, Mike <https://oro.open.ac.uk/view/person/mw275.html> (2005). Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling? Lithos, 79(3-4) pp. 355–366. Journal Item PeerReviewed 2005 ftopenunivgb 2024-06-05T00:37:59Z The delivery of volcanogenic sulphur into the upper atmosphere by explosive eruptions is known to cause significant temporary climate cooling. Therefore, phreatomagmatic and phreatoplinian eruptions occurring during the final rifting stages of active flood basalt provinces provide a potent mechanism for triggering climate change. During the early Eocene, the northeast Atlantic margin was subjected to repeated ashfall for 0.5 m.y. This was the result of extensive phreatomagmatic activity along 3000 km of the opening northeast Atlantic rift. These widespread, predominantly basaltic ashes are now preserved in marine sediments of the Balder Formation and its equivalents, and occur over an area extending from the Faroe Islands to Denmark and southern England. These ash-bearing sediments also contain pollen and spore floras derived from low diversity forests that grew in cooler, drier climates than were experienced either before or after these highly explosive eruptions. In addition, coeval plant macrofossil evidence from the Bighorn Basin, Wyoming, USA, also shows a comparable pattern of vegetation change. The coincidence of the ashes and cooler climate pollen and spore floras in northwest Europe identifies volcanism as the primary cause of climate cooling. Estimates show that whilst relatively few phreatomagmatic eruptive centres along the 3000 km opening rift system could readily generate 0.5–1 °C cooling, on an annual basis, only persistent or repeated volcanic phases would have been able to achieve the long-term cooling effect observed in the floral record. We propose that the cumulative effect of repeated Balder Formation eruptions initiated a biodiversity crisis in the northeast Atlantic margin forests. Only the decline of this persistent volcanic activity, and the subsequent climatic warming at the start of the Eocene Thermal Maximum allowed the growth of subtropical forests to develop across the region. Article in Journal/Newspaper Faroe Islands North Atlantic Northeast Atlantic The Open University: Open Research Online (ORO) Faroe Islands Balder ENVELOPE(-63.756,-63.756,-66.438,-66.438) Lithos 79 3-4 355 366
institution Open Polar
collection The Open University: Open Research Online (ORO)
op_collection_id ftopenunivgb
language unknown
description The delivery of volcanogenic sulphur into the upper atmosphere by explosive eruptions is known to cause significant temporary climate cooling. Therefore, phreatomagmatic and phreatoplinian eruptions occurring during the final rifting stages of active flood basalt provinces provide a potent mechanism for triggering climate change. During the early Eocene, the northeast Atlantic margin was subjected to repeated ashfall for 0.5 m.y. This was the result of extensive phreatomagmatic activity along 3000 km of the opening northeast Atlantic rift. These widespread, predominantly basaltic ashes are now preserved in marine sediments of the Balder Formation and its equivalents, and occur over an area extending from the Faroe Islands to Denmark and southern England. These ash-bearing sediments also contain pollen and spore floras derived from low diversity forests that grew in cooler, drier climates than were experienced either before or after these highly explosive eruptions. In addition, coeval plant macrofossil evidence from the Bighorn Basin, Wyoming, USA, also shows a comparable pattern of vegetation change. The coincidence of the ashes and cooler climate pollen and spore floras in northwest Europe identifies volcanism as the primary cause of climate cooling. Estimates show that whilst relatively few phreatomagmatic eruptive centres along the 3000 km opening rift system could readily generate 0.5–1 °C cooling, on an annual basis, only persistent or repeated volcanic phases would have been able to achieve the long-term cooling effect observed in the floral record. We propose that the cumulative effect of repeated Balder Formation eruptions initiated a biodiversity crisis in the northeast Atlantic margin forests. Only the decline of this persistent volcanic activity, and the subsequent climatic warming at the start of the Eocene Thermal Maximum allowed the growth of subtropical forests to develop across the region.
format Article in Journal/Newspaper
author Jolley, David W.
Widdowson, Mike
spellingShingle Jolley, David W.
Widdowson, Mike
Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling?
author_facet Jolley, David W.
Widdowson, Mike
author_sort Jolley, David W.
title Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling?
title_short Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling?
title_full Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling?
title_fullStr Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling?
title_full_unstemmed Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling?
title_sort did paleogene north atlantic rift-related eruptions drive early eocene climate cooling?
publishDate 2005
url https://oro.open.ac.uk/6911/
long_lat ENVELOPE(-63.756,-63.756,-66.438,-66.438)
geographic Faroe Islands
Balder
geographic_facet Faroe Islands
Balder
genre Faroe Islands
North Atlantic
Northeast Atlantic
genre_facet Faroe Islands
North Atlantic
Northeast Atlantic
op_relation Jolley, David W. and Widdowson, Mike <https://oro.open.ac.uk/view/person/mw275.html> (2005). Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling? Lithos, 79(3-4) pp. 355–366.
container_title Lithos
container_volume 79
container_issue 3-4
container_start_page 355
op_container_end_page 366
_version_ 1802644017161175040