The Functionally Distinct Hemoglobins of the Arctic Spotted Wolffish Anarhichas minor

The Arctic fish Anarhichas minor, a benthic sedentary species, displays high hemoglobin multiplicity. The three major hemoglobins (Hb 1, Hb 2, and Hb 3) show important functional differences in pH and organophosphate regulation, subunit cooperativity, and response of oxygen binding to temperature. H...

Full description

Bibliographic Details
Published in:Journal of Biological Chemistry
Main Authors: Elio Parisi, Antonio Riccio, Maurizio Tamburrini, Cinzia Verde, Guido di Prisco, Vito Carratore
Format: Article in Journal/Newspaper
Language:English
Published: 2002
Subjects:
Online Access:https://www.openaccessrepository.it/record/94653
https://doi.org/10.1074/jbc.m202474200
Description
Summary:The Arctic fish Anarhichas minor, a benthic sedentary species, displays high hemoglobin multiplicity. The three major hemoglobins (Hb 1, Hb 2, and Hb 3) show important functional differences in pH and organophosphate regulation, subunit cooperativity, and response of oxygen binding to temperature. Hb 1 and Hb 2 display a low, effector-enhanced Bohr effect and no Root effect. In contrast, Hb 3 displays pronounced Bohr and Root effects, accompanied by strong organophosphate regulation. Hb 1 has the beta (beta(1)) chain in common with Hb 2; Hb 3 and Hb 2 share the alpha (alpha(2)) chain. The amino acid sequences have been established. Several substitutions in crucial positions were observed, such as Cys in place of C-terminal His in the beta(1) chain of Hb 1 and Hb 2. In Hb 3, Val E11 of the beta(2) chain is replaced by Ile. Homology modeling revealed an unusual structure of the Hb 3 binding site of inositol hexakisphoshate. Phylogenetic analysis indicated that only Hb 2 displays higher overall similarity with the major Antarctic hemoglobins. The oxygen transport system of A. minor differs remarkably from those of Antarctic Notothenioidei, indicating distinct evolutionary pathways in the regulatory mechanisms of the fish respiratory system in the two polar environments.