Genesis of Diamond Dust and Thick Cloud Episodes observed above Dome C, Antarctica

Abstract. From 15 March to 8 April 2011 and from 4 to 5 March 2013, the atmosphere above Dome C (Concordia station, Antarctica, 75°06' S, 123°21' E, 3233 m amsl) has been probed by several instruments and model to study episodes of thick cloud and diamond dust (cloud constituted of suspend...

Full description

Bibliographic Details
Main Authors: Ricaud, Philippe, Bazile, Eric, del Guasta, Massimo, Lanconelli, Christian, Grigioni, Paolo, Mahjoub, Achraf
Format: Article in Journal/Newspaper
Language:unknown
Published: 2016
Subjects:
Online Access:https://www.openaccessrepository.it/record/29297
https://doi.org/10.5194/acp-2016-815
Description
Summary:Abstract. From 15 March to 8 April 2011 and from 4 to 5 March 2013, the atmosphere above Dome C (Concordia station, Antarctica, 75°06' S, 123°21' E, 3233 m amsl) has been probed by several instruments and model to study episodes of thick cloud and diamond dust (cloud constituted of suspended ice crystals). 1) A ground-based microwave radiometer (HAMSTRAD, H 2 O Antarctica Microwave Stratospheric and Tropospheric Radiometers) installed at Dome C that provided vertical profiles of tropospheric temperature and absolute humidity to calculate Integrated Water Vapour (IWV). 2) Daily radiosoundings launched at 12:00 UTC at Dome C. 3) A tropospheric aerosol Lidar that provides aerosol depolarization ratio along the vertical at Dome C. 4) Down- and upward short- and longwave radiations as provided by the Baseline Surface Radiation Network (BSRN) facilities. 5) Space-borne aerosol depolarization ratio from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform along orbits close to the Dome C station. The time evolution of the atmosphere has also been evaluated by considering the outputs from the meso-scale AROME and the global-scale ARPEGE meteorological models. Two distinct periods are highlighted by all the datasets: the warm and wet periods (24–26 March 2011 and 4 March 2013) and the cold and dry periods (5 April 2011 and 5 March 2013). Combining radiation and active measurements of aerosols with nebulosity calculations, a thick cloud is detected during the warm and wet periods with high depolarization ratios (greater than 30 %) from the surface to 5–7 km altitude associated with precipitation of ice particles and the presence of a supercooled liquid water (depolarization of about 10 %) cloud. During the cold and dry periods, high depolarization ratios (greater than 30 %) to a maximum altitude of 100–500 m are measured suggesting that the cloud is constituted of ice crystals with no trace of precipitation. ...