What do we learn from long-term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories?
Abstract. Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud conden...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
2017
|
Subjects: | |
Online Access: | https://www.openaccessrepository.it/record/131003 https://doi.org/10.5194/acp-2017-798 |
_version_ | 1821865863202996224 |
---|---|
author | Bas Henzing Roman Fröhlich Ulrich Pöschl Pasi Aalto Minsu Park Joel Brito Urs Baltensperger Hartmut Herrmann Erik Herrmann Mikael Ehn Arnoud Frumau Rupert Holzinger Meintrat O. Andreae Martin Gysel Atsushi Matsuki Nikolaos Mihalopoulos Nikos Kalivitis Tuukka Petäjä Erik Swietlicki Adam Kristensson Laurent Poulain Göran Frank John A. Ogren Alfred Wiedensohler Frank Stratmann Samara Carbone David Picard Gerard Kos Mira L. Pöhlker André S. H. Prévôt Julia Schmale Paulo Artaxo Aikaterini Bougiatioti Christopher Pöhlker Mikhail Paramonov Helmi Keskinen Colin D. O'Dowd Nicolas Bukowiecki Seong Soo Yum Jurgita Ovadnevaite Iasonas Stavroulas Markku Kulmala Anne Jefferson Karine Sellegri Mikko Äijälä Stefano Decesari Silvia Henning Athanasios Nenes Yoko Iwamoto Patrick Schlag |
author_facet | Bas Henzing Roman Fröhlich Ulrich Pöschl Pasi Aalto Minsu Park Joel Brito Urs Baltensperger Hartmut Herrmann Erik Herrmann Mikael Ehn Arnoud Frumau Rupert Holzinger Meintrat O. Andreae Martin Gysel Atsushi Matsuki Nikolaos Mihalopoulos Nikos Kalivitis Tuukka Petäjä Erik Swietlicki Adam Kristensson Laurent Poulain Göran Frank John A. Ogren Alfred Wiedensohler Frank Stratmann Samara Carbone David Picard Gerard Kos Mira L. Pöhlker André S. H. Prévôt Julia Schmale Paulo Artaxo Aikaterini Bougiatioti Christopher Pöhlker Mikhail Paramonov Helmi Keskinen Colin D. O'Dowd Nicolas Bukowiecki Seong Soo Yum Jurgita Ovadnevaite Iasonas Stavroulas Markku Kulmala Anne Jefferson Karine Sellegri Mikko Äijälä Stefano Decesari Silvia Henning Athanasios Nenes Yoko Iwamoto Patrick Schlag |
author_sort | Bas Henzing |
collection | Istituto Nazionale di Fisica Nucleare (INFN): Open Access Repository |
description | Abstract. Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Numerous observations of CCN number concentration exist, and many closure studies have been performed to predict CCN number concentrations based on particle number size distributions, chemical composition, and the κ-Köhler theory. Most of these studies provide details for short time periods or focus on special environmental conditions. These observations, however, cannot address questions of large-scale temporal and spatial CCN variability. Here we analyze long-term observations of CCN number concentrations, particle number size distributions and chemical composition from twelve sites on three continents. Eight of these stations are part of the European Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS). We group the observatories into categories according to their official classification: coastal background (Barrow, Alaska; Mace Head, Ireland; Finokalia, Crete; Noto Peninsula, Japan), rural background (Melpitz, Germany; Cabauw, the Netherlands; Vavihill, Sweden), alpine sites (Puy de Dôme, France; Jungfraujoch, Switzerland), remote forest sites (ATTO, Brazil; SMEAR, Finland) and the urban environment (Seoul, South Korea). Expectedly, CCN characteristics are highly variable across regions. However, they also vary within categories, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behavior, most continental stations exhibit very similar relative activation ratios across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the activation ratios spread more widely across the SS spectrum. Several stations show strong seasonal cycles of CCN number concentrations ... |
format | Article in Journal/Newspaper |
genre | Barrow Alaska |
genre_facet | Barrow Alaska |
geographic | Mace Noto |
geographic_facet | Mace Noto |
id | ftopenaccessrep:oai:zenodo.org:131003 |
institution | Open Polar |
language | unknown |
long_lat | ENVELOPE(155.883,155.883,-81.417,-81.417) ENVELOPE(-60.811,-60.811,-62.471,-62.471) |
op_collection_id | ftopenaccessrep |
op_doi | https://doi.org/10.5194/acp-2017-798 |
op_relation | info:eu-repo/grantAgreement/EC/FP7/603445/ info:eu-repo/grantAgreement/EC/FP7/262254/ url:https://www.openaccessrepository.it/communities/itmirror https://www.openaccessrepository.it/record/131003 doi:10.5194/acp-2017-798 |
op_rights | info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ |
publishDate | 2017 |
record_format | openpolar |
spelling | ftopenaccessrep:oai:zenodo.org:131003 2025-01-16T21:12:54+00:00 What do we learn from long-term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories? Bas Henzing Roman Fröhlich Ulrich Pöschl Pasi Aalto Minsu Park Joel Brito Urs Baltensperger Hartmut Herrmann Erik Herrmann Mikael Ehn Arnoud Frumau Rupert Holzinger Meintrat O. Andreae Martin Gysel Atsushi Matsuki Nikolaos Mihalopoulos Nikos Kalivitis Tuukka Petäjä Erik Swietlicki Adam Kristensson Laurent Poulain Göran Frank John A. Ogren Alfred Wiedensohler Frank Stratmann Samara Carbone David Picard Gerard Kos Mira L. Pöhlker André S. H. Prévôt Julia Schmale Paulo Artaxo Aikaterini Bougiatioti Christopher Pöhlker Mikhail Paramonov Helmi Keskinen Colin D. O'Dowd Nicolas Bukowiecki Seong Soo Yum Jurgita Ovadnevaite Iasonas Stavroulas Markku Kulmala Anne Jefferson Karine Sellegri Mikko Äijälä Stefano Decesari Silvia Henning Athanasios Nenes Yoko Iwamoto Patrick Schlag 2017-08-31 https://www.openaccessrepository.it/record/131003 https://doi.org/10.5194/acp-2017-798 und unknown info:eu-repo/grantAgreement/EC/FP7/603445/ info:eu-repo/grantAgreement/EC/FP7/262254/ url:https://www.openaccessrepository.it/communities/itmirror https://www.openaccessrepository.it/record/131003 doi:10.5194/acp-2017-798 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ Research and Innovation action Netherlands EC European Commission Knowmad Institut H2020 info:eu-repo/semantics/article publication-article 2017 ftopenaccessrep https://doi.org/10.5194/acp-2017-798 2023-10-03T22:19:10Z Abstract. Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Numerous observations of CCN number concentration exist, and many closure studies have been performed to predict CCN number concentrations based on particle number size distributions, chemical composition, and the κ-Köhler theory. Most of these studies provide details for short time periods or focus on special environmental conditions. These observations, however, cannot address questions of large-scale temporal and spatial CCN variability. Here we analyze long-term observations of CCN number concentrations, particle number size distributions and chemical composition from twelve sites on three continents. Eight of these stations are part of the European Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS). We group the observatories into categories according to their official classification: coastal background (Barrow, Alaska; Mace Head, Ireland; Finokalia, Crete; Noto Peninsula, Japan), rural background (Melpitz, Germany; Cabauw, the Netherlands; Vavihill, Sweden), alpine sites (Puy de Dôme, France; Jungfraujoch, Switzerland), remote forest sites (ATTO, Brazil; SMEAR, Finland) and the urban environment (Seoul, South Korea). Expectedly, CCN characteristics are highly variable across regions. However, they also vary within categories, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behavior, most continental stations exhibit very similar relative activation ratios across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the activation ratios spread more widely across the SS spectrum. Several stations show strong seasonal cycles of CCN number concentrations ... Article in Journal/Newspaper Barrow Alaska Istituto Nazionale di Fisica Nucleare (INFN): Open Access Repository Mace ENVELOPE(155.883,155.883,-81.417,-81.417) Noto ENVELOPE(-60.811,-60.811,-62.471,-62.471) |
spellingShingle | Research and Innovation action Netherlands EC European Commission Knowmad Institut H2020 Bas Henzing Roman Fröhlich Ulrich Pöschl Pasi Aalto Minsu Park Joel Brito Urs Baltensperger Hartmut Herrmann Erik Herrmann Mikael Ehn Arnoud Frumau Rupert Holzinger Meintrat O. Andreae Martin Gysel Atsushi Matsuki Nikolaos Mihalopoulos Nikos Kalivitis Tuukka Petäjä Erik Swietlicki Adam Kristensson Laurent Poulain Göran Frank John A. Ogren Alfred Wiedensohler Frank Stratmann Samara Carbone David Picard Gerard Kos Mira L. Pöhlker André S. H. Prévôt Julia Schmale Paulo Artaxo Aikaterini Bougiatioti Christopher Pöhlker Mikhail Paramonov Helmi Keskinen Colin D. O'Dowd Nicolas Bukowiecki Seong Soo Yum Jurgita Ovadnevaite Iasonas Stavroulas Markku Kulmala Anne Jefferson Karine Sellegri Mikko Äijälä Stefano Decesari Silvia Henning Athanasios Nenes Yoko Iwamoto Patrick Schlag What do we learn from long-term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories? |
title | What do we learn from long-term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories? |
title_full | What do we learn from long-term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories? |
title_fullStr | What do we learn from long-term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories? |
title_full_unstemmed | What do we learn from long-term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories? |
title_short | What do we learn from long-term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories? |
title_sort | what do we learn from long-term cloud condensation nuclei number concentration, particle number size distribution, and chemical composition measurements at regionally representative observatories? |
topic | Research and Innovation action Netherlands EC European Commission Knowmad Institut H2020 |
topic_facet | Research and Innovation action Netherlands EC European Commission Knowmad Institut H2020 |
url | https://www.openaccessrepository.it/record/131003 https://doi.org/10.5194/acp-2017-798 |