Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radionuclides

AbstractNumerous studies of the ice caps in Greenland and Antarctica have observed accumulations of transuranic radionuclides and fission products from nuclear weapons testing, particularly during the period 1945–75. Recently, the concentrations of radionuclides in the annually deposited surface lay...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Wayne Workman, Thomas G. Kotzer, Akira Kudo, James Zheng
Format: Article in Journal/Newspaper
Language:English
Published: 2000
Subjects:
Online Access:https://www.openaccessrepository.it/record/121993
https://doi.org/10.3189/172756500781833395
Description
Summary:AbstractNumerous studies of the ice caps in Greenland and Antarctica have observed accumulations of transuranic radionuclides and fission products from nuclear weapons testing, particularly during the period 1945–75. Recently, the concentrations of radionuclides in the annually deposited surface layers of Agassiz Ice Cap, Ellesmere Island, Canadian Arctic, from 1945 to the present have been measured and have demonstrated a continuous record of deposition of 137Cs and 239,240Pu in ice and snow. In this study, 3He-ingrowth mass spectrometry has been used to measure the low levels of tritium (3H) in some of these samples. Pre-nuclear-bomb tritium levels in ice-core samples were approximately 12 TU in high-latitude meteoric waters and 3–9 TU in mid-latitude meteoric waters. Comparisons of 3H levels and 3H/137Cs + 239,240Pu ratios, which were quite low during the earliest fission-bomb detonations (1946–51) and substantially higher during thermonuclear hydrogen-fusion bomb testing (1952–64), provide a clear indication of the type of nuclear device detonated. This finding accords with the results from other ice-core studies of the distribution of anthropogenic radionuclides from bomb fallout.