Seasonal Variability of Heat and Mass Transport Process in the Upper Tropical Atlantic Ocean: A Numerical Model Study

A simple 2.5 layer numerical model was developed and used to illustrate the seasonal variability of heat and mass transports in the upper tropical Atlantic Ocean, associated with the seasonal movement of the Inter-Tropical Convergence Zone (ITCZ). The model ocean was forced by seasonally varying cli...

Full description

Bibliographic Details
Main Author: Lee, Sang-Ki
Format: Text
Language:unknown
Published: ODU Digital Commons 1995
Subjects:
Online Access:https://digitalcommons.odu.edu/oeas_etds/51
https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1054&context=oeas_etds
id ftolddominionuni:oai:digitalcommons.odu.edu:oeas_etds-1054
record_format openpolar
spelling ftolddominionuni:oai:digitalcommons.odu.edu:oeas_etds-1054 2023-05-15T17:36:52+02:00 Seasonal Variability of Heat and Mass Transport Process in the Upper Tropical Atlantic Ocean: A Numerical Model Study Lee, Sang-Ki 1995-01-01T08:00:00Z application/pdf https://digitalcommons.odu.edu/oeas_etds/51 https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1054&context=oeas_etds unknown ODU Digital Commons https://digitalcommons.odu.edu/oeas_etds/51 https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1054&context=oeas_etds In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). OES Theses and Dissertations Heat transfer Oceanography text 1995 ftolddominionuni 2023-01-16T18:44:35Z A simple 2.5 layer numerical model was developed and used to illustrate the seasonal variability of heat and mass transports in the upper tropical Atlantic Ocean, associated with the seasonal movement of the Inter-Tropical Convergence Zone (ITCZ). The model ocean was forced by seasonally varying climatological wind and heat flux fields. The entrainment at the base of the mixed layer was scaled by wind stress and shear at the bottom of the mixed layer. On an annual average, the northward transport of the tropical warm water is about 11 Sv, with roughly 10 Sv associated with entrainment of upper thermocline water and the other 1 Sv executing a cross-equatorial path continuously from the South Atlantic. Out of the total 10 Sv of the needed upper thermocline water, 9 Sv enters the equatorial belt from the South Atlantic. The seasonal response to the ITCZ movement was most striking in the entrainment rate and the warm water escape rate across the northern edge of the equatorial cell. The entrainment rate was found to be significant during May/December and ceased between January and April. The locally forced equilibrium response between the interfacial shear and the zonal wind stress east of 30°W appears to be responsible for this cycle. The warm water escape toward the North Atlantic takes place mainly between December and May and stops during July/September. Further investigation suggested that the seasonal intensification of the North Equatorial Countercurrent (NECC) serves as a major obstacle to the warm water escape: during July/September the strong negative wind stress curl north of the equator intensifies the NECC, which requires a source of mass at its origin in the west. The North Brazil Current (NBC), therefore, veers offshore completely and provides the mass, terminating the warm water escape via the NBC-Guiana Current route. Strengthening of the NECC also steepens the mixed layer floor, forming a strong potential vorticity front along the northern edge of the NECC. The northward warm water escape via the ... Text North Atlantic Old Dominion University: ODU Digital Commons Curl ENVELOPE(-63.071,-63.071,-70.797,-70.797)
institution Open Polar
collection Old Dominion University: ODU Digital Commons
op_collection_id ftolddominionuni
language unknown
topic Heat transfer
Oceanography
spellingShingle Heat transfer
Oceanography
Lee, Sang-Ki
Seasonal Variability of Heat and Mass Transport Process in the Upper Tropical Atlantic Ocean: A Numerical Model Study
topic_facet Heat transfer
Oceanography
description A simple 2.5 layer numerical model was developed and used to illustrate the seasonal variability of heat and mass transports in the upper tropical Atlantic Ocean, associated with the seasonal movement of the Inter-Tropical Convergence Zone (ITCZ). The model ocean was forced by seasonally varying climatological wind and heat flux fields. The entrainment at the base of the mixed layer was scaled by wind stress and shear at the bottom of the mixed layer. On an annual average, the northward transport of the tropical warm water is about 11 Sv, with roughly 10 Sv associated with entrainment of upper thermocline water and the other 1 Sv executing a cross-equatorial path continuously from the South Atlantic. Out of the total 10 Sv of the needed upper thermocline water, 9 Sv enters the equatorial belt from the South Atlantic. The seasonal response to the ITCZ movement was most striking in the entrainment rate and the warm water escape rate across the northern edge of the equatorial cell. The entrainment rate was found to be significant during May/December and ceased between January and April. The locally forced equilibrium response between the interfacial shear and the zonal wind stress east of 30°W appears to be responsible for this cycle. The warm water escape toward the North Atlantic takes place mainly between December and May and stops during July/September. Further investigation suggested that the seasonal intensification of the North Equatorial Countercurrent (NECC) serves as a major obstacle to the warm water escape: during July/September the strong negative wind stress curl north of the equator intensifies the NECC, which requires a source of mass at its origin in the west. The North Brazil Current (NBC), therefore, veers offshore completely and provides the mass, terminating the warm water escape via the NBC-Guiana Current route. Strengthening of the NECC also steepens the mixed layer floor, forming a strong potential vorticity front along the northern edge of the NECC. The northward warm water escape via the ...
format Text
author Lee, Sang-Ki
author_facet Lee, Sang-Ki
author_sort Lee, Sang-Ki
title Seasonal Variability of Heat and Mass Transport Process in the Upper Tropical Atlantic Ocean: A Numerical Model Study
title_short Seasonal Variability of Heat and Mass Transport Process in the Upper Tropical Atlantic Ocean: A Numerical Model Study
title_full Seasonal Variability of Heat and Mass Transport Process in the Upper Tropical Atlantic Ocean: A Numerical Model Study
title_fullStr Seasonal Variability of Heat and Mass Transport Process in the Upper Tropical Atlantic Ocean: A Numerical Model Study
title_full_unstemmed Seasonal Variability of Heat and Mass Transport Process in the Upper Tropical Atlantic Ocean: A Numerical Model Study
title_sort seasonal variability of heat and mass transport process in the upper tropical atlantic ocean: a numerical model study
publisher ODU Digital Commons
publishDate 1995
url https://digitalcommons.odu.edu/oeas_etds/51
https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1054&context=oeas_etds
long_lat ENVELOPE(-63.071,-63.071,-70.797,-70.797)
geographic Curl
geographic_facet Curl
genre North Atlantic
genre_facet North Atlantic
op_source OES Theses and Dissertations
op_relation https://digitalcommons.odu.edu/oeas_etds/51
https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1054&context=oeas_etds
op_rights In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
_version_ 1766136487323107328