Effects of Wind, Density, and Bathymetry on a One-Layer Southern Ocean Model

Steady solutions from a one-layer, wind-driven, primitive equation model are analyzed to determine the importance of wind forcing, pressure gradient force due to the climatological density distribution and bottom form drag on circulation in the Southern Ocean. Five simulations are discussed: three w...

Full description

Bibliographic Details
Main Author: Klinck, John M.
Format: Article in Journal/Newspaper
Language:unknown
Published: ODU Digital Commons 1992
Subjects:
Online Access:https://digitalcommons.odu.edu/ccpo_pubs/171
https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1176&context=ccpo_pubs
id ftolddominionuni:oai:digitalcommons.odu.edu:ccpo_pubs-1176
record_format openpolar
spelling ftolddominionuni:oai:digitalcommons.odu.edu:ccpo_pubs-1176 2023-05-15T13:38:02+02:00 Effects of Wind, Density, and Bathymetry on a One-Layer Southern Ocean Model Klinck, John M. 1992-01-01T08:00:00Z application/pdf https://digitalcommons.odu.edu/ccpo_pubs/171 https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1176&context=ccpo_pubs unknown ODU Digital Commons https://digitalcommons.odu.edu/ccpo_pubs/171 https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1176&context=ccpo_pubs CCPO Publications Antarctic Circumpolar Current Beta plane channel Drake passage Large scale Topography Driven Transport Dynamics Physics Flow Oceanography article 1992 ftolddominionuni 2021-03-02T18:09:25Z Steady solutions from a one-layer, wind-driven, primitive equation model are analyzed to determine the importance of wind forcing, pressure gradient force due to the climatological density distribution and bottom form drag on circulation in the Southern Ocean. Five simulations are discussed: three wind-forced simulations, with differing bathymetry (flat bottom, 15% bathymetry, and full bathymetry), one case with full bathymetry forced with the density-induced pressure force, and one case with full bathymetry forced by both wind and density-induced pressure gradients. The simulations presented here confirm the previous speculation (Munk and Palmen, 1951) that form drag is effective in balancing the driving force due to the surface wind stress. In fact, it has such a strong effect that bathymetry with only 15% of the true amplitude reduces the transport from over 480 x 106 m3 s-1 to about 190 x 106 m3 s-1. If the true bathymetry is used, the total transport is reduced to a value around 20 x 106 m3 s-1. Analysis of the zonally integrated momentum in the unblocked latitudes of the Southern Ocean shows that the bottom form drag balances the surface forcing, even for simulations that have viscosities that are in the upper range of acceptable values The vertically integrated pressure gradient due to the climatological density distribution produces a body force that accelerates the Antarctic Circumpolar Current, producing a transport of about 250 x 106 m3 s-1. Therefore the pressure gradient produced by the density structure of the Southern Ocean is an integral part of the dynamics of the Antarctic Circumpolar Current. It forces the flow across bathymetry that would, in the absence of the spatially varying density field, block the circulation. This result is in contrast to mid-latitude gyres in which the steady, wind-driven circulation is insulated from the influence of bathymetry by stratification (Anderson and Killworth, 1977). Article in Journal/Newspaper Antarc* Antarctic Drake Passage Southern Ocean Old Dominion University: ODU Digital Commons Antarctic Drake Passage Munk ENVELOPE(-95.993,-95.993,55.979,55.979) Southern Ocean The Antarctic
institution Open Polar
collection Old Dominion University: ODU Digital Commons
op_collection_id ftolddominionuni
language unknown
topic Antarctic Circumpolar Current
Beta plane channel
Drake passage
Large scale
Topography
Driven
Transport
Dynamics
Physics
Flow
Oceanography
spellingShingle Antarctic Circumpolar Current
Beta plane channel
Drake passage
Large scale
Topography
Driven
Transport
Dynamics
Physics
Flow
Oceanography
Klinck, John M.
Effects of Wind, Density, and Bathymetry on a One-Layer Southern Ocean Model
topic_facet Antarctic Circumpolar Current
Beta plane channel
Drake passage
Large scale
Topography
Driven
Transport
Dynamics
Physics
Flow
Oceanography
description Steady solutions from a one-layer, wind-driven, primitive equation model are analyzed to determine the importance of wind forcing, pressure gradient force due to the climatological density distribution and bottom form drag on circulation in the Southern Ocean. Five simulations are discussed: three wind-forced simulations, with differing bathymetry (flat bottom, 15% bathymetry, and full bathymetry), one case with full bathymetry forced with the density-induced pressure force, and one case with full bathymetry forced by both wind and density-induced pressure gradients. The simulations presented here confirm the previous speculation (Munk and Palmen, 1951) that form drag is effective in balancing the driving force due to the surface wind stress. In fact, it has such a strong effect that bathymetry with only 15% of the true amplitude reduces the transport from over 480 x 106 m3 s-1 to about 190 x 106 m3 s-1. If the true bathymetry is used, the total transport is reduced to a value around 20 x 106 m3 s-1. Analysis of the zonally integrated momentum in the unblocked latitudes of the Southern Ocean shows that the bottom form drag balances the surface forcing, even for simulations that have viscosities that are in the upper range of acceptable values The vertically integrated pressure gradient due to the climatological density distribution produces a body force that accelerates the Antarctic Circumpolar Current, producing a transport of about 250 x 106 m3 s-1. Therefore the pressure gradient produced by the density structure of the Southern Ocean is an integral part of the dynamics of the Antarctic Circumpolar Current. It forces the flow across bathymetry that would, in the absence of the spatially varying density field, block the circulation. This result is in contrast to mid-latitude gyres in which the steady, wind-driven circulation is insulated from the influence of bathymetry by stratification (Anderson and Killworth, 1977).
format Article in Journal/Newspaper
author Klinck, John M.
author_facet Klinck, John M.
author_sort Klinck, John M.
title Effects of Wind, Density, and Bathymetry on a One-Layer Southern Ocean Model
title_short Effects of Wind, Density, and Bathymetry on a One-Layer Southern Ocean Model
title_full Effects of Wind, Density, and Bathymetry on a One-Layer Southern Ocean Model
title_fullStr Effects of Wind, Density, and Bathymetry on a One-Layer Southern Ocean Model
title_full_unstemmed Effects of Wind, Density, and Bathymetry on a One-Layer Southern Ocean Model
title_sort effects of wind, density, and bathymetry on a one-layer southern ocean model
publisher ODU Digital Commons
publishDate 1992
url https://digitalcommons.odu.edu/ccpo_pubs/171
https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1176&context=ccpo_pubs
long_lat ENVELOPE(-95.993,-95.993,55.979,55.979)
geographic Antarctic
Drake Passage
Munk
Southern Ocean
The Antarctic
geographic_facet Antarctic
Drake Passage
Munk
Southern Ocean
The Antarctic
genre Antarc*
Antarctic
Drake Passage
Southern Ocean
genre_facet Antarc*
Antarctic
Drake Passage
Southern Ocean
op_source CCPO Publications
op_relation https://digitalcommons.odu.edu/ccpo_pubs/171
https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1176&context=ccpo_pubs
_version_ 1766100863133155328