Rapid evolution fuels transcriptional plasticity to ocean acidification

Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volca...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Jingliang Kang, Ivan Nagelkerken, Jodie L. Rummer, Riccardo Rodolfo‐Metalpa, Philip L. Munday, Timothy Ravasi, Celia Schunter
Format: Article in Journal/Newspaper
Language:English
Published: John Wiley & Sons Ltd. 2022
Subjects:
Online Access:http://id.nii.ac.jp/1394/00002440/
https://oist.repo.nii.ac.jp/?action=repository_uri&item_id=2703
https://oist.repo.nii.ac.jp/?action=repository_action_common_download&item_id=2703&item_no=1&attribute_id=22&file_no=1
id ftokinawainstst:oai:oist.repo.nii.ac.jp:00002703
record_format openpolar
spelling ftokinawainstst:oai:oist.repo.nii.ac.jp:00002703 2023-05-15T17:50:16+02:00 Rapid evolution fuels transcriptional plasticity to ocean acidification Jingliang Kang Ivan Nagelkerken Jodie L. Rummer Riccardo Rodolfo‐Metalpa Philip L. Munday Timothy Ravasi Celia Schunter 2022-03-03 http://id.nii.ac.jp/1394/00002440/ https://oist.repo.nii.ac.jp/?action=repository_uri&item_id=2703 https://oist.repo.nii.ac.jp/?action=repository_action_common_download&item_id=2703&item_no=1&attribute_id=22&file_no=1 en eng John Wiley & Sons Ltd. info:pmid/35238117 doi:10.1111/gcb.16119 https://oist.repo.nii.ac.jp/?action=repository_uri&item_id=2703 http://id.nii.ac.jp/1394/00002440/ Global Change Biology, 28(9), 3007-3022(2022-03-03) 1354-1013 1365-2486 publisher https://oist.repo.nii.ac.jp/?action=repository_action_common_download&item_id=2703&item_no=1&attribute_id=22&file_no=1 © 2022 The Author(s). https://onlinelibrary.wiley.com/doi/10.1111/gcb.16119 circadian rhythm climate change elevated pCO2 intracellular pH neuromolecular response transcriptome Journal Article 2022 ftokinawainstst https://doi.org/10.1111/gcb.16119 2022-12-02T00:24:57Z Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2 seep and an adjacent control reef in Papua New Guinea. We show that elevated pCO2 induced common molecular responses related to circadian rhythm and immune system but different magnitudes of molecular response across the six species. Notably, elevated transcriptional plasticity was associated with core circadian genes affecting the regulation of intracellular pH and neural activity in Acanthochromis polyacanthus. Gene expression patterns were reversible in this species as evidenced upon reduction of CO2 following a natural storm-event. Compared with other species, Ac. polyacanthus has a more rapid evolutionary rate and more positively selected genes in key functions under the influence of elevated CO2, thus fueling increased transcriptional plasticity. Our study reveals the basis to variable gene expression changes across species, with some species possessing evolved molecular toolkits to cope with future OA. Article in Journal/Newspaper Ocean acidification OIST Institutional Repository Global Change Biology 28 9 3007 3022
institution Open Polar
collection OIST Institutional Repository
op_collection_id ftokinawainstst
language English
topic circadian rhythm
climate change
elevated pCO2
intracellular pH
neuromolecular response
transcriptome
spellingShingle circadian rhythm
climate change
elevated pCO2
intracellular pH
neuromolecular response
transcriptome
Jingliang Kang
Ivan Nagelkerken
Jodie L. Rummer
Riccardo Rodolfo‐Metalpa
Philip L. Munday
Timothy Ravasi
Celia Schunter
Rapid evolution fuels transcriptional plasticity to ocean acidification
topic_facet circadian rhythm
climate change
elevated pCO2
intracellular pH
neuromolecular response
transcriptome
description Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2 seep and an adjacent control reef in Papua New Guinea. We show that elevated pCO2 induced common molecular responses related to circadian rhythm and immune system but different magnitudes of molecular response across the six species. Notably, elevated transcriptional plasticity was associated with core circadian genes affecting the regulation of intracellular pH and neural activity in Acanthochromis polyacanthus. Gene expression patterns were reversible in this species as evidenced upon reduction of CO2 following a natural storm-event. Compared with other species, Ac. polyacanthus has a more rapid evolutionary rate and more positively selected genes in key functions under the influence of elevated CO2, thus fueling increased transcriptional plasticity. Our study reveals the basis to variable gene expression changes across species, with some species possessing evolved molecular toolkits to cope with future OA.
format Article in Journal/Newspaper
author Jingliang Kang
Ivan Nagelkerken
Jodie L. Rummer
Riccardo Rodolfo‐Metalpa
Philip L. Munday
Timothy Ravasi
Celia Schunter
author_facet Jingliang Kang
Ivan Nagelkerken
Jodie L. Rummer
Riccardo Rodolfo‐Metalpa
Philip L. Munday
Timothy Ravasi
Celia Schunter
author_sort Jingliang Kang
title Rapid evolution fuels transcriptional plasticity to ocean acidification
title_short Rapid evolution fuels transcriptional plasticity to ocean acidification
title_full Rapid evolution fuels transcriptional plasticity to ocean acidification
title_fullStr Rapid evolution fuels transcriptional plasticity to ocean acidification
title_full_unstemmed Rapid evolution fuels transcriptional plasticity to ocean acidification
title_sort rapid evolution fuels transcriptional plasticity to ocean acidification
publisher John Wiley & Sons Ltd.
publishDate 2022
url http://id.nii.ac.jp/1394/00002440/
https://oist.repo.nii.ac.jp/?action=repository_uri&item_id=2703
https://oist.repo.nii.ac.jp/?action=repository_action_common_download&item_id=2703&item_no=1&attribute_id=22&file_no=1
genre Ocean acidification
genre_facet Ocean acidification
op_source https://onlinelibrary.wiley.com/doi/10.1111/gcb.16119
op_relation info:pmid/35238117
doi:10.1111/gcb.16119
https://oist.repo.nii.ac.jp/?action=repository_uri&item_id=2703
http://id.nii.ac.jp/1394/00002440/
Global Change Biology, 28(9), 3007-3022(2022-03-03)
1354-1013
1365-2486
publisher
https://oist.repo.nii.ac.jp/?action=repository_action_common_download&item_id=2703&item_no=1&attribute_id=22&file_no=1
op_rights © 2022 The Author(s).
op_doi https://doi.org/10.1111/gcb.16119
container_title Global Change Biology
container_volume 28
container_issue 9
container_start_page 3007
op_container_end_page 3022
_version_ 1766156964185767936