Enhanced biological carbon consumption in a high CO2 ocean

The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times1, causing a measurable reduction in seawater pH and carbonate saturation2. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lo...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Riebesell, Ulf, Schulz, Kai G., Bellerby, R. G. J., Botros, Mona, Fritsche, Peter, Meyerhöfer, Michael, Neill, C., Nondal, G., Oschlies, Andreas, Wohlers, Julia, Zöllner, Eckart
Format: Article in Journal/Newspaper
Language:English
Published: Nature Publishing Group 2007
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/955/
https://oceanrep.geomar.de/id/eprint/955/1/2007_Riebesell_etal_nature06267.pdf
https://doi.org/10.1038/nature06267
id ftoceanrep:oai:oceanrep.geomar.de:955
record_format openpolar
spelling ftoceanrep:oai:oceanrep.geomar.de:955 2024-09-30T14:40:48+00:00 Enhanced biological carbon consumption in a high CO2 ocean Riebesell, Ulf Schulz, Kai G. Bellerby, R. G. J. Botros, Mona Fritsche, Peter Meyerhöfer, Michael Neill, C. Nondal, G. Oschlies, Andreas Wohlers, Julia Zöllner, Eckart 2007 text https://oceanrep.geomar.de/id/eprint/955/ https://oceanrep.geomar.de/id/eprint/955/1/2007_Riebesell_etal_nature06267.pdf https://doi.org/10.1038/nature06267 en eng Nature Publishing Group https://oceanrep.geomar.de/id/eprint/955/1/2007_Riebesell_etal_nature06267.pdf Riebesell, U. , Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, A. , Wohlers, J. and Zöllner, E. (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450 (7169). pp. 545-548. DOI 10.1038/nature06267 <https://doi.org/10.1038/nature06267>. doi:10.1038/nature06267 info:eu-repo/semantics/restrictedAccess Article PeerReviewed 2007 ftoceanrep https://doi.org/10.1038/nature06267 2024-09-04T05:04:40Z The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times1, causing a measurable reduction in seawater pH and carbonate saturation2. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period3. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms4, 5, 6. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 μatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today’s ocean7. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change. Article in Journal/Newspaper Ocean acidification OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel) Nature 450 7169 545 548
institution Open Polar
collection OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel)
op_collection_id ftoceanrep
language English
description The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times1, causing a measurable reduction in seawater pH and carbonate saturation2. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period3. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms4, 5, 6. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 μatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today’s ocean7. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.
format Article in Journal/Newspaper
author Riebesell, Ulf
Schulz, Kai G.
Bellerby, R. G. J.
Botros, Mona
Fritsche, Peter
Meyerhöfer, Michael
Neill, C.
Nondal, G.
Oschlies, Andreas
Wohlers, Julia
Zöllner, Eckart
spellingShingle Riebesell, Ulf
Schulz, Kai G.
Bellerby, R. G. J.
Botros, Mona
Fritsche, Peter
Meyerhöfer, Michael
Neill, C.
Nondal, G.
Oschlies, Andreas
Wohlers, Julia
Zöllner, Eckart
Enhanced biological carbon consumption in a high CO2 ocean
author_facet Riebesell, Ulf
Schulz, Kai G.
Bellerby, R. G. J.
Botros, Mona
Fritsche, Peter
Meyerhöfer, Michael
Neill, C.
Nondal, G.
Oschlies, Andreas
Wohlers, Julia
Zöllner, Eckart
author_sort Riebesell, Ulf
title Enhanced biological carbon consumption in a high CO2 ocean
title_short Enhanced biological carbon consumption in a high CO2 ocean
title_full Enhanced biological carbon consumption in a high CO2 ocean
title_fullStr Enhanced biological carbon consumption in a high CO2 ocean
title_full_unstemmed Enhanced biological carbon consumption in a high CO2 ocean
title_sort enhanced biological carbon consumption in a high co2 ocean
publisher Nature Publishing Group
publishDate 2007
url https://oceanrep.geomar.de/id/eprint/955/
https://oceanrep.geomar.de/id/eprint/955/1/2007_Riebesell_etal_nature06267.pdf
https://doi.org/10.1038/nature06267
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://oceanrep.geomar.de/id/eprint/955/1/2007_Riebesell_etal_nature06267.pdf
Riebesell, U. , Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, A. , Wohlers, J. and Zöllner, E. (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450 (7169). pp. 545-548. DOI 10.1038/nature06267 <https://doi.org/10.1038/nature06267>.
doi:10.1038/nature06267
op_rights info:eu-repo/semantics/restrictedAccess
op_doi https://doi.org/10.1038/nature06267
container_title Nature
container_volume 450
container_issue 7169
container_start_page 545
op_container_end_page 548
_version_ 1811643283052429312