Signal propagation related to the North Atlantic Overturning
Changes of the meridional overturning circulation (MOC) due to surface heat flux variability related to the North Atlantic Oscillation (NAO) are analyzed in various ocean models, i.e., eddying and non‐eddying cases. A prime signature of the forcing is variability of the winter‐time convection in the...
Published in: | Geophysical Research Letters |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
AGU (American Geophysical Union)
2005
|
Subjects: | |
Online Access: | https://oceanrep.geomar.de/id/eprint/7733/ https://oceanrep.geomar.de/id/eprint/7733/1/2004GL021002.pdf https://doi.org/10.1029/2004GL021002 |
_version_ | 1821574029641777152 |
---|---|
author | Getzlaff, Julia Böning, Claus W. Eden, Carsten Biastoch, Arne |
author_facet | Getzlaff, Julia Böning, Claus W. Eden, Carsten Biastoch, Arne |
author_sort | Getzlaff, Julia |
collection | OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel) |
container_issue | 9 |
container_title | Geophysical Research Letters |
container_volume | 32 |
description | Changes of the meridional overturning circulation (MOC) due to surface heat flux variability related to the North Atlantic Oscillation (NAO) are analyzed in various ocean models, i.e., eddying and non‐eddying cases. A prime signature of the forcing is variability of the winter‐time convection in the Labrador Sea. The associated changes in the strength of the MOC near the subpolar front (45°N) are closely related to the NAO‐index, leading MOC anomalies by about 2–3 years in both the eddying and non‐eddying simulation. Further south the speed of the meridional signal propagation depends on model resolution. With lower resolution (non‐eddying case, 4/3° resolution) the MOC signal propagates equatorward with a mean speed of about 0.6 cm/s, similar as spreading rates of passive tracer anomalies. Eddy‐permitting experiments (1/3°) show a significantly faster propagation, with speeds corresponding to boundary waves, thus leading to an almost in‐phase variation of the MOC transport over the subtropical to subpolar North Atlantic. |
format | Article in Journal/Newspaper |
genre | Labrador Sea North Atlantic North Atlantic oscillation |
genre_facet | Labrador Sea North Atlantic North Atlantic oscillation |
id | ftoceanrep:oai:oceanrep.geomar.de:7733 |
institution | Open Polar |
language | English |
op_collection_id | ftoceanrep |
op_doi | https://doi.org/10.1029/2004GL021002 |
op_relation | https://oceanrep.geomar.de/id/eprint/7733/1/2004GL021002.pdf Getzlaff, J., Böning, C. W. , Eden, C. and Biastoch, A. (2005) Signal propagation related to the North Atlantic Overturning. Open Access Geophysical Research Letters, 32 . L09602. DOI 10.1029/2004GL021002 <https://doi.org/10.1029/2004GL021002>. doi:10.1029/2004GL021002 |
op_rights | info:eu-repo/semantics/openAccess |
publishDate | 2005 |
publisher | AGU (American Geophysical Union) |
record_format | openpolar |
spelling | ftoceanrep:oai:oceanrep.geomar.de:7733 2025-01-16T22:57:11+00:00 Signal propagation related to the North Atlantic Overturning Getzlaff, Julia Böning, Claus W. Eden, Carsten Biastoch, Arne 2005 text https://oceanrep.geomar.de/id/eprint/7733/ https://oceanrep.geomar.de/id/eprint/7733/1/2004GL021002.pdf https://doi.org/10.1029/2004GL021002 en eng AGU (American Geophysical Union) https://oceanrep.geomar.de/id/eprint/7733/1/2004GL021002.pdf Getzlaff, J., Böning, C. W. , Eden, C. and Biastoch, A. (2005) Signal propagation related to the North Atlantic Overturning. Open Access Geophysical Research Letters, 32 . L09602. DOI 10.1029/2004GL021002 <https://doi.org/10.1029/2004GL021002>. doi:10.1029/2004GL021002 info:eu-repo/semantics/openAccess Article PeerReviewed 2005 ftoceanrep https://doi.org/10.1029/2004GL021002 2023-04-07T14:55:23Z Changes of the meridional overturning circulation (MOC) due to surface heat flux variability related to the North Atlantic Oscillation (NAO) are analyzed in various ocean models, i.e., eddying and non‐eddying cases. A prime signature of the forcing is variability of the winter‐time convection in the Labrador Sea. The associated changes in the strength of the MOC near the subpolar front (45°N) are closely related to the NAO‐index, leading MOC anomalies by about 2–3 years in both the eddying and non‐eddying simulation. Further south the speed of the meridional signal propagation depends on model resolution. With lower resolution (non‐eddying case, 4/3° resolution) the MOC signal propagates equatorward with a mean speed of about 0.6 cm/s, similar as spreading rates of passive tracer anomalies. Eddy‐permitting experiments (1/3°) show a significantly faster propagation, with speeds corresponding to boundary waves, thus leading to an almost in‐phase variation of the MOC transport over the subtropical to subpolar North Atlantic. Article in Journal/Newspaper Labrador Sea North Atlantic North Atlantic oscillation OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel) Geophysical Research Letters 32 9 |
spellingShingle | Getzlaff, Julia Böning, Claus W. Eden, Carsten Biastoch, Arne Signal propagation related to the North Atlantic Overturning |
title | Signal propagation related to the North Atlantic Overturning |
title_full | Signal propagation related to the North Atlantic Overturning |
title_fullStr | Signal propagation related to the North Atlantic Overturning |
title_full_unstemmed | Signal propagation related to the North Atlantic Overturning |
title_short | Signal propagation related to the North Atlantic Overturning |
title_sort | signal propagation related to the north atlantic overturning |
url | https://oceanrep.geomar.de/id/eprint/7733/ https://oceanrep.geomar.de/id/eprint/7733/1/2004GL021002.pdf https://doi.org/10.1029/2004GL021002 |