Relaxation behavior of a laterally varying earth model in response to glacial loading

Viscoelastic deformations of an earth structure in response to a time-varying surface load are analyzed in glacial isostatic adjustment (GIA). When solving this problem, aspects like flexure of the lithosphere and retarded response of mantle material become evident. Quantified are these by flexural...

Full description

Bibliographic Details
Main Authors: Klemann, Volker, Bagge, Meike, Martinec, Z.
Format: Conference Object
Language:unknown
Published: 2020
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/55529/
id ftoceanrep:oai:oceanrep.geomar.de:55529
record_format openpolar
spelling ftoceanrep:oai:oceanrep.geomar.de:55529 2023-05-15T13:54:44+02:00 Relaxation behavior of a laterally varying earth model in response to glacial loading Klemann, Volker Bagge, Meike Martinec, Z. 2020-12 https://oceanrep.geomar.de/id/eprint/55529/ unknown Klemann, V., Bagge, M. and Martinec, Z. (2020) Relaxation behavior of a laterally varying earth model in response to glacial loading. [Invited talk] In: AGU Fall Meeting 2020. , 01.-17.12.2020, Online, San Francisco, USA . info:eu-repo/semantics/closedAccess Conference or Workshop Item NonPeerReviewed 2020 ftoceanrep 2023-04-07T16:01:26Z Viscoelastic deformations of an earth structure in response to a time-varying surface load are analyzed in glacial isostatic adjustment (GIA). When solving this problem, aspects like flexure of the lithosphere and retarded response of mantle material become evident. Quantified are these by flexural rigidity and relaxation times. The concepts partly lose their relevance when changing from a 1D earth structure (only radial variations) to a 2D or a 3D earth structure (lateral variations). In regions like Fennoscandia and Laurentide, which are affected by GIA, lateral variations of the lithosphere and mantle structure are moderate and, so, the application of a 1D earth structure is widely accepted. But, also for these two regions one has to keep in mind that the respective 1D earth structures differ and that such an approximation mainly holds in the central part of the respective region. In contrast, lateral variations or a local structure of different viscosity have to be considered in areas like Patagonia, Antarctica or Alaska which is located above tectonic activity or covers a region with significant lateral changes in earth structure. But, already for the two former examples one has to keep in mind that the respective 1D earth structures inferred from GIA modelling differ between the two regions. Focusing on the relaxation behavior and the mantle-material transport, we discuss the effect of lateral variations on the deformation process. We will assess to which extent a 1D earth structure can represent lateral variability in structural features, and, at which point a 3D earth structure has to be considered. Such questions are of concern, when discussing GIA for geodetic applications as well as in earth system modeling as this study contributes to the climate modeling initiative Palmod. Conference Object Antarc* Antarctica Fennoscandia Alaska OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel) Patagonia
institution Open Polar
collection OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel)
op_collection_id ftoceanrep
language unknown
description Viscoelastic deformations of an earth structure in response to a time-varying surface load are analyzed in glacial isostatic adjustment (GIA). When solving this problem, aspects like flexure of the lithosphere and retarded response of mantle material become evident. Quantified are these by flexural rigidity and relaxation times. The concepts partly lose their relevance when changing from a 1D earth structure (only radial variations) to a 2D or a 3D earth structure (lateral variations). In regions like Fennoscandia and Laurentide, which are affected by GIA, lateral variations of the lithosphere and mantle structure are moderate and, so, the application of a 1D earth structure is widely accepted. But, also for these two regions one has to keep in mind that the respective 1D earth structures differ and that such an approximation mainly holds in the central part of the respective region. In contrast, lateral variations or a local structure of different viscosity have to be considered in areas like Patagonia, Antarctica or Alaska which is located above tectonic activity or covers a region with significant lateral changes in earth structure. But, already for the two former examples one has to keep in mind that the respective 1D earth structures inferred from GIA modelling differ between the two regions. Focusing on the relaxation behavior and the mantle-material transport, we discuss the effect of lateral variations on the deformation process. We will assess to which extent a 1D earth structure can represent lateral variability in structural features, and, at which point a 3D earth structure has to be considered. Such questions are of concern, when discussing GIA for geodetic applications as well as in earth system modeling as this study contributes to the climate modeling initiative Palmod.
format Conference Object
author Klemann, Volker
Bagge, Meike
Martinec, Z.
spellingShingle Klemann, Volker
Bagge, Meike
Martinec, Z.
Relaxation behavior of a laterally varying earth model in response to glacial loading
author_facet Klemann, Volker
Bagge, Meike
Martinec, Z.
author_sort Klemann, Volker
title Relaxation behavior of a laterally varying earth model in response to glacial loading
title_short Relaxation behavior of a laterally varying earth model in response to glacial loading
title_full Relaxation behavior of a laterally varying earth model in response to glacial loading
title_fullStr Relaxation behavior of a laterally varying earth model in response to glacial loading
title_full_unstemmed Relaxation behavior of a laterally varying earth model in response to glacial loading
title_sort relaxation behavior of a laterally varying earth model in response to glacial loading
publishDate 2020
url https://oceanrep.geomar.de/id/eprint/55529/
geographic Patagonia
geographic_facet Patagonia
genre Antarc*
Antarctica
Fennoscandia
Alaska
genre_facet Antarc*
Antarctica
Fennoscandia
Alaska
op_relation Klemann, V., Bagge, M. and Martinec, Z. (2020) Relaxation behavior of a laterally varying earth model in response to glacial loading. [Invited talk] In: AGU Fall Meeting 2020. , 01.-17.12.2020, Online, San Francisco, USA .
op_rights info:eu-repo/semantics/closedAccess
_version_ 1766260837837701120