Interdecadal Pacific Oscillation Drives Enhanced Greenland Surface Temperature Variability During the Last Glacial Maximum
Stable oxygen isotope records from central Greenland suggest disproportionally large long‐term surface air temperature (SAT) variability during the Last Glacial Maximum (LGM) relative to preindustrial times. Large perturbations in mean atmospheric circulation and its variability forced by extensive...
Published in: | Geophysical Research Letters |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
AGU (American Geophysical Union)
2020
|
Subjects: | |
Online Access: | https://oceanrep.geomar.de/id/eprint/51271/ https://oceanrep.geomar.de/id/eprint/51271/1/2020GL088922.pdf https://oceanrep.geomar.de/id/eprint/51271/2/grl61599-sup-0001-2020gl088922-si.docx https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL088922 https://doi.org/10.1029/2020GL088922 |
Summary: | Stable oxygen isotope records from central Greenland suggest disproportionally large long‐term surface air temperature (SAT) variability during the Last Glacial Maximum (LGM) relative to preindustrial times. Large perturbations in mean atmospheric circulation and its variability forced by extensive Northern Hemisphere ice sheet coverage have been suggested as cause for the enhanced Greenland SAT variability. Here, we assess the factors driving Greenland SAT variability during the LGM by means of dedicated climate model simulations and find remote forcing from the Pacific of critical importance. Atmospheric teleconnections from the Interdecadal Pacific Oscillation (IPO), a multidecadal oscillation of sea surface temperature in the Pacific Ocean, strongly intensify under LGM conditions, driving enhanced surface wind variability over Greenland, which in turn amplifies SAT variability by anomalous atmospheric heat transport. A major role of the IPO in forcing Greenland SAT variability also is supported by a number of models from the Paleoclimate Modeling Intercomparison Project Phase III |
---|