The genome sequence of the giant phototrophic gammaproteobacterium Thiospirillum jenense gives insight into its physiological properties and phylogenetic relationships

In a conserved culture of the purple sulfur bacterium Thiospirillum jenense DSM216T, cells of this species were easily recognized by cell morphology, large-size spirilla and visible flagellar tuft. The Tsp. jenense genome is 3.22 Mb in size and has a GC content of 48.7 mol%. It was readily identifie...

Full description

Bibliographic Details
Published in:Archives of Microbiology
Main Authors: Imhoff, Johannes F., Meyer, Terrance E., Kyndt, John A.
Format: Article in Journal/Newspaper
Language:English
Published: Springer 2021
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/50295/
https://oceanrep.geomar.de/id/eprint/50295/1/Imhoff2021_Article_TheGenomeSequenceOfTheGiantPho.pdf
https://doi.org/10.1007/s00203-020-02006-7
Description
Summary:In a conserved culture of the purple sulfur bacterium Thiospirillum jenense DSM216T, cells of this species were easily recognized by cell morphology, large-size spirilla and visible flagellar tuft. The Tsp. jenense genome is 3.22 Mb in size and has a GC content of 48.7 mol%. It was readily identified as a member of the Chromatiaceae by the complement of proteins in its genome. A whole genome comparison clearly placed Tsp. jenense near Thiorhodovibrio and Rhabdochromatium species and somewhat more distant from Thiohalocapsa and Halochromatium species. This relationship was also found with the sequences of the photosynthetic reaction center protein PufM. The genome sequence supported important properties of this bacterium: the presence of ribulose-bisphosphate carboxylase and enzymes of the Calvin cycle of autotrophic carbon dioxide fixation but the absence of carboxysomes, an incomplete tricarboxylic acid cycle and the lack of malate dehydrogenase, the presence of a sulfur oxidation pathway including adenylylsulfate reductase (aprAB) but absence of assimilatory sulfate reduction, the presence of hydrogenase (hoxHMFYUFE), nitrogenase and a photosynthetic gene cluster (pufBALMC). The FixNOP type of cytochrome oxidase was notably lacking, which may be the reason that renders the cells highly sensitive to oxygen. Two minor phototrophic contaminants were found using metagenomic binning: one was identified as a strain of Rhodopseudomonas palustris and the second one has an average nucleotide identity of 82% to the nearest neighbor Rhodoferax antarcticus. It should be considered as a new species of this genus and Rhodoferax jenense is proposed as the name.