The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea
This thesis focuses on the nature of oceanic Eddy Kinetic Energy (EKE), its generation and temporal variability. An Ocean General Circulation Model (OGCM) based on the NEMO code builds the foundation for these investigations. For a first case study, several simulations of a 1/4° configuration are us...
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://oceanrep.geomar.de/id/eprint/47663/ https://oceanrep.geomar.de/id/eprint/47663/1/Dissertation_JanKlausRieck_EddyKineticEnergyOceanModel.pdf |
id |
ftoceanrep:oai:oceanrep.geomar.de:47663 |
---|---|
record_format |
openpolar |
spelling |
ftoceanrep:oai:oceanrep.geomar.de:47663 2023-05-15T17:06:07+02:00 The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea Rieck, Jan Klaus 2019 text https://oceanrep.geomar.de/id/eprint/47663/ https://oceanrep.geomar.de/id/eprint/47663/1/Dissertation_JanKlausRieck_EddyKineticEnergyOceanModel.pdf en eng https://oceanrep.geomar.de/id/eprint/47663/1/Dissertation_JanKlausRieck_EddyKineticEnergyOceanModel.pdf Rieck, J. K. (2019) The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea. Open Access (PhD/ Doctoral thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 105 pp. cc_by_4.0 info:eu-repo/semantics/openAccess Thesis NonPeerReviewed 2019 ftoceanrep 2023-04-07T15:47:19Z This thesis focuses on the nature of oceanic Eddy Kinetic Energy (EKE), its generation and temporal variability. An Ocean General Circulation Model (OGCM) based on the NEMO code builds the foundation for these investigations. For a first case study, several simulations of a 1/4° configuration are used to investigate the temporal variability of EKE in the South Pacific Subtropical Countercurrent (STCC). Decadal changes in wind stress curl associated with the Interdecadal Pacific Oscillation (IPO) lead to up- and downwelling in the STCC, influencing the meridional density gradient and thereby STCC strength, baroclinic instability and the resulting EKE. An additional 30 to 40% of the local density anomalies can be explained by long baroclinic Rossby waves propagating into the region, modulating the decadal signal of the IPO’s influence in the STCC on interannual time scales. In a second case study, the model’s horizontal resolution is regionally increased to 1/20° in the North Atlantic to investigate different types of mesoscale eddies in the Labrador Sea. On decadal time scales, the temporal variability of EKE in the LS is driven by the large-scale atmospheric circulation. In the case of Convective Eddies (CE), local winter heat loss leads to deep convection, a baroclinically unstable rim-current is established along the edge of the convection area and generates EKE at mid-depth. The variations of EKE associated with the surface intensified Irminger Rings (IR) and Boundary Current Eddies are driven by the large-scale changes of the currents of the subpolar gyre. While IR play a vital role in stratifying large parts of the LS and thus suppressing deep convection, CE are the major driver of rapid restratification during and after deep convection. Thesis Labrador Sea North Atlantic OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel) Curl ENVELOPE(-63.071,-63.071,-70.797,-70.797) Pacific |
institution |
Open Polar |
collection |
OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel) |
op_collection_id |
ftoceanrep |
language |
English |
description |
This thesis focuses on the nature of oceanic Eddy Kinetic Energy (EKE), its generation and temporal variability. An Ocean General Circulation Model (OGCM) based on the NEMO code builds the foundation for these investigations. For a first case study, several simulations of a 1/4° configuration are used to investigate the temporal variability of EKE in the South Pacific Subtropical Countercurrent (STCC). Decadal changes in wind stress curl associated with the Interdecadal Pacific Oscillation (IPO) lead to up- and downwelling in the STCC, influencing the meridional density gradient and thereby STCC strength, baroclinic instability and the resulting EKE. An additional 30 to 40% of the local density anomalies can be explained by long baroclinic Rossby waves propagating into the region, modulating the decadal signal of the IPO’s influence in the STCC on interannual time scales. In a second case study, the model’s horizontal resolution is regionally increased to 1/20° in the North Atlantic to investigate different types of mesoscale eddies in the Labrador Sea. On decadal time scales, the temporal variability of EKE in the LS is driven by the large-scale atmospheric circulation. In the case of Convective Eddies (CE), local winter heat loss leads to deep convection, a baroclinically unstable rim-current is established along the edge of the convection area and generates EKE at mid-depth. The variations of EKE associated with the surface intensified Irminger Rings (IR) and Boundary Current Eddies are driven by the large-scale changes of the currents of the subpolar gyre. While IR play a vital role in stratifying large parts of the LS and thus suppressing deep convection, CE are the major driver of rapid restratification during and after deep convection. |
format |
Thesis |
author |
Rieck, Jan Klaus |
spellingShingle |
Rieck, Jan Klaus The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea |
author_facet |
Rieck, Jan Klaus |
author_sort |
Rieck, Jan Klaus |
title |
The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea |
title_short |
The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea |
title_full |
The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea |
title_fullStr |
The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea |
title_full_unstemmed |
The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea |
title_sort |
nature and variability of eddy kinetic energy in an ocean general circulation model with a focus on the south pacific subtropical gyre and the labrador sea |
publishDate |
2019 |
url |
https://oceanrep.geomar.de/id/eprint/47663/ https://oceanrep.geomar.de/id/eprint/47663/1/Dissertation_JanKlausRieck_EddyKineticEnergyOceanModel.pdf |
long_lat |
ENVELOPE(-63.071,-63.071,-70.797,-70.797) |
geographic |
Curl Pacific |
geographic_facet |
Curl Pacific |
genre |
Labrador Sea North Atlantic |
genre_facet |
Labrador Sea North Atlantic |
op_relation |
https://oceanrep.geomar.de/id/eprint/47663/1/Dissertation_JanKlausRieck_EddyKineticEnergyOceanModel.pdf Rieck, J. K. (2019) The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea. Open Access (PhD/ Doctoral thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 105 pp. |
op_rights |
cc_by_4.0 info:eu-repo/semantics/openAccess |
_version_ |
1766061105232216064 |