Fluid venting in the eastern Aleutian subduction zone

Fluid venting has been observed along 800 km of the Alaska convergent margin. The fluid venting sites are located near the deformation front, are controlled by subsurface structures, and exhibit the characteristics of cold seeps seen in other convergent margins. The more important characteristics in...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth
Main Authors: Suess, Erwin, Bohrmann, Gerhard, von Huene, Roland, Linke, Peter, Wallmann, Klaus, Lammers, Stephan, Sahling, Heiko, Winckler, Gisela, Lutz, Richard A., Orange, Daniel
Format: Article in Journal/Newspaper
Language:English
Published: AGU (American Geophysical Union) 1998
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/4066/
https://oceanrep.geomar.de/id/eprint/4066/1/jgrb11242.pdf
https://doi.org/10.1029/97JB02131
id ftoceanrep:oai:oceanrep.geomar.de:4066
record_format openpolar
spelling ftoceanrep:oai:oceanrep.geomar.de:4066 2023-05-15T17:04:42+02:00 Fluid venting in the eastern Aleutian subduction zone Suess, Erwin Bohrmann, Gerhard von Huene, Roland Linke, Peter Wallmann, Klaus Lammers, Stephan Sahling, Heiko Winckler, Gisela Lutz, Richard A. Orange, Daniel 1998 text https://oceanrep.geomar.de/id/eprint/4066/ https://oceanrep.geomar.de/id/eprint/4066/1/jgrb11242.pdf https://doi.org/10.1029/97JB02131 en eng AGU (American Geophysical Union) https://oceanrep.geomar.de/id/eprint/4066/1/jgrb11242.pdf Suess, E., Bohrmann, G., von Huene, R., Linke, P. , Wallmann, K. , Lammers, S., Sahling, H., Winckler, G., Lutz, R. A. and Orange, D. (1998) Fluid venting in the eastern Aleutian subduction zone. Open Access Journal of Geophysical Research: Solid Earth, 103 (B2). pp. 2597-2614. DOI 10.1029/97JB02131 <https://doi.org/10.1029/97JB02131>. doi:10.1029/97JB02131 cc_by_3.0 info:eu-repo/semantics/openAccess Article PeerReviewed 1998 ftoceanrep https://doi.org/10.1029/97JB02131 2023-04-07T14:48:56Z Fluid venting has been observed along 800 km of the Alaska convergent margin. The fluid venting sites are located near the deformation front, are controlled by subsurface structures, and exhibit the characteristics of cold seeps seen in other convergent margins. The more important characteristics include (1) methane plumes in the lower water column with maxima above the seafloor which are traceable to the initial deformation ridges; (2) prolific colonies of vent biota aligned and distributed in patches controlled by fault scarps, over‐steepened folds or outcrops of bedding planes; (3) calcium carbonate and barite precipitates at the surface and subsurface of vents; and (4) carbon isotope evidence from tissue and skeletal hard parts of biota, as well as from carbonate precipitates, that vents expel either methane‐ or sulfide‐dominated fluids. A biogeochemical approach toward estimating fluid flow rates from individual vents based on oxygen flux measurements and vent fluid analysis indicates a mean value of 5.5±0.7 L m−2 d−1 for tectonics‐induced water flow [Wallmann et al., 1997b]. A geophysical estimate of dewatering from the same area [von Huene et al., 1997] based on sediment porosity reduction shows a fluid loss of 0.02 L m−2 d−1 for a 5.5 km wide converged segment near the deformation front. Our video‐guided surveys have documented vent biota across a minimum of 0.1% of the area of the convergent segment off Kodiak Island; hence an average rate of 0.006 L m−2 d−1 is estimated from the biogeochemical approach. The two estimates for tectonics‐induced water flow from the accretionary prism are in surprisingly good agreement. Article in Journal/Newspaper Kodiak Alaska OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel) Journal of Geophysical Research: Solid Earth 103 B2 2597 2614
institution Open Polar
collection OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel)
op_collection_id ftoceanrep
language English
description Fluid venting has been observed along 800 km of the Alaska convergent margin. The fluid venting sites are located near the deformation front, are controlled by subsurface structures, and exhibit the characteristics of cold seeps seen in other convergent margins. The more important characteristics include (1) methane plumes in the lower water column with maxima above the seafloor which are traceable to the initial deformation ridges; (2) prolific colonies of vent biota aligned and distributed in patches controlled by fault scarps, over‐steepened folds or outcrops of bedding planes; (3) calcium carbonate and barite precipitates at the surface and subsurface of vents; and (4) carbon isotope evidence from tissue and skeletal hard parts of biota, as well as from carbonate precipitates, that vents expel either methane‐ or sulfide‐dominated fluids. A biogeochemical approach toward estimating fluid flow rates from individual vents based on oxygen flux measurements and vent fluid analysis indicates a mean value of 5.5±0.7 L m−2 d−1 for tectonics‐induced water flow [Wallmann et al., 1997b]. A geophysical estimate of dewatering from the same area [von Huene et al., 1997] based on sediment porosity reduction shows a fluid loss of 0.02 L m−2 d−1 for a 5.5 km wide converged segment near the deformation front. Our video‐guided surveys have documented vent biota across a minimum of 0.1% of the area of the convergent segment off Kodiak Island; hence an average rate of 0.006 L m−2 d−1 is estimated from the biogeochemical approach. The two estimates for tectonics‐induced water flow from the accretionary prism are in surprisingly good agreement.
format Article in Journal/Newspaper
author Suess, Erwin
Bohrmann, Gerhard
von Huene, Roland
Linke, Peter
Wallmann, Klaus
Lammers, Stephan
Sahling, Heiko
Winckler, Gisela
Lutz, Richard A.
Orange, Daniel
spellingShingle Suess, Erwin
Bohrmann, Gerhard
von Huene, Roland
Linke, Peter
Wallmann, Klaus
Lammers, Stephan
Sahling, Heiko
Winckler, Gisela
Lutz, Richard A.
Orange, Daniel
Fluid venting in the eastern Aleutian subduction zone
author_facet Suess, Erwin
Bohrmann, Gerhard
von Huene, Roland
Linke, Peter
Wallmann, Klaus
Lammers, Stephan
Sahling, Heiko
Winckler, Gisela
Lutz, Richard A.
Orange, Daniel
author_sort Suess, Erwin
title Fluid venting in the eastern Aleutian subduction zone
title_short Fluid venting in the eastern Aleutian subduction zone
title_full Fluid venting in the eastern Aleutian subduction zone
title_fullStr Fluid venting in the eastern Aleutian subduction zone
title_full_unstemmed Fluid venting in the eastern Aleutian subduction zone
title_sort fluid venting in the eastern aleutian subduction zone
publisher AGU (American Geophysical Union)
publishDate 1998
url https://oceanrep.geomar.de/id/eprint/4066/
https://oceanrep.geomar.de/id/eprint/4066/1/jgrb11242.pdf
https://doi.org/10.1029/97JB02131
genre Kodiak
Alaska
genre_facet Kodiak
Alaska
op_relation https://oceanrep.geomar.de/id/eprint/4066/1/jgrb11242.pdf
Suess, E., Bohrmann, G., von Huene, R., Linke, P. , Wallmann, K. , Lammers, S., Sahling, H., Winckler, G., Lutz, R. A. and Orange, D. (1998) Fluid venting in the eastern Aleutian subduction zone. Open Access Journal of Geophysical Research: Solid Earth, 103 (B2). pp. 2597-2614. DOI 10.1029/97JB02131 <https://doi.org/10.1029/97JB02131>.
doi:10.1029/97JB02131
op_rights cc_by_3.0
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1029/97JB02131
container_title Journal of Geophysical Research: Solid Earth
container_volume 103
container_issue B2
container_start_page 2597
op_container_end_page 2614
_version_ 1766059032167055360