Spreading of overflow water from the Greenland to the Labrador Sea

In 1996, about 320 kg of SF6 were introduced in the center of the Greenland Sea gyre. We use this signal together with the CFC distribution to follow the spreading of Greenland gyre water from the Denmark Strait through the Irminger Basin and the Labrador Sea to the Grand Banks. In the summer of 200...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Tanhua, Toste, Bulsiewicz, Klaus, Rhein, Monika
Format: Article in Journal/Newspaper
Language:English
Published: AGU (American Geophysical Union) 2005
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/3480/
https://oceanrep.geomar.de/id/eprint/3480/1/Tanhua05a.pdf
https://doi.org/10.1029/2005GL022700
Description
Summary:In 1996, about 320 kg of SF6 were introduced in the center of the Greenland Sea gyre. We use this signal together with the CFC distribution to follow the spreading of Greenland gyre water from the Denmark Strait through the Irminger Basin and the Labrador Sea to the Grand Banks. In the summer of 2003 Denmark Strait Overflow Water tagged with deliberately released SF6 could be traced throughout the Irminger Basin to the central Labrador Sea, confirming that water with potential density of 28.045 contributes to the Denmark Strait Overflow. The upper limit of the transfer time from the central Greenland Sea to the Labrador Sea was found to be 7 years. This study suggests that roughly 4 kg of excess SF6 has been transported over the Denmark Strait and confirm earlier reported transport through the Faroe Bank Channel. These results should be considered when using SF6 as a transient tracer.