Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition

Highlights • Records of seawater εNdεNd are highly unradiogenic across the OMT at Ceara Rise. • Strong influence of Amazon particulate Nd on seawater εNdεNd at Ceara Rise. • Point-sourced riverine Nd influences seawater far from continental shelf. • Regional sedimentary Nd flux can be confused with...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Stewart, Joseph A., Gutjahr, Marcus, James, Rachael H., Anand, Pallavi, Wilson, Paul A.
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2016
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/34075/
https://oceanrep.geomar.de/id/eprint/34075/1/Stewart.pdf
https://oceanrep.geomar.de/id/eprint/34075/2/Stewart_Supp.doc
https://doi.org/10.1016/j.epsl.2016.08.037
id ftoceanrep:oai:oceanrep.geomar.de:34075
record_format openpolar
spelling ftoceanrep:oai:oceanrep.geomar.de:34075 2023-05-15T17:36:30+02:00 Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition Stewart, Joseph A. Gutjahr, Marcus James, Rachael H. Anand, Pallavi Wilson, Paul A. 2016 text https://oceanrep.geomar.de/id/eprint/34075/ https://oceanrep.geomar.de/id/eprint/34075/1/Stewart.pdf https://oceanrep.geomar.de/id/eprint/34075/2/Stewart_Supp.doc https://doi.org/10.1016/j.epsl.2016.08.037 en eng Elsevier https://oceanrep.geomar.de/id/eprint/34075/1/Stewart.pdf https://oceanrep.geomar.de/id/eprint/34075/2/Stewart_Supp.doc Stewart, J. A., Gutjahr, M. , James, R. H., Anand, P. and Wilson, P. A. (2016) Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition. Open Access Earth and Planetary Science Letters, 454 . pp. 132-141. DOI 10.1016/j.epsl.2016.08.037 <https://doi.org/10.1016/j.epsl.2016.08.037>. doi:10.1016/j.epsl.2016.08.037 cc_by_4.0 info:eu-repo/semantics/openAccess Article PeerReviewed 2016 ftoceanrep https://doi.org/10.1016/j.epsl.2016.08.037 2023-04-07T15:27:48Z Highlights • Records of seawater εNdεNd are highly unradiogenic across the OMT at Ceara Rise. • Strong influence of Amazon particulate Nd on seawater εNdεNd at Ceara Rise. • Point-sourced riverine Nd influences seawater far from continental shelf. • Regional sedimentary Nd flux can be confused with water mass mixing signals. Abstract Dissolved and particulate neodymium (Nd) are mainly supplied to the oceans via rivers, dust, and release from marine sediments along continental margins. This process, together with the short oceanic residence time of Nd, gives rise to pronounced spatial gradients in oceanic 143Nd/144Nd ratios (εNdεNd). However, we do not yet have a good understanding of the extent to which the influence of riverine point-source Nd supply can be distinguished from changes in mixing between different water masses in the marine geological record. This gap in knowledge is important to fill because there is growing awareness that major global climate transitions may be associated not only with changes in large-scale ocean water mass mixing, but also with important changes in continental hydroclimate and weathering. Here we present εNdεNd data for fossilised fish teeth, planktonic foraminifera, and the Fe–Mn oxyhydroxide and detrital fractions of sediments recovered from Ocean Drilling Project (ODP) Site 926 on Ceara Rise, situated approximately 800 km from the mouth of the River Amazon. Our records span the Mi-1 glaciation event during the Oligocene–Miocene transition (OMT; ∼23 Ma). We compare our εNdεNd records with data for ambient deep Atlantic northern and southern component waters to assess the influence of particulate input from the Amazon River on Nd in ancient deep waters at this site. εNdεNd values for all of our fish teeth, foraminifera, and Fe–Mn oxyhydroxide samples are extremely unradiogenic (εNd≈−15εNd≈−15); much lower than the εNdεNd for deep waters of modern or Oligocene–Miocene age from the North Atlantic (εNd≈−10εNd≈−10) and South Atlantic (εNd≈−8εNd≈−8). This finding suggests that ... Article in Journal/Newspaper North Atlantic Planktonic foraminifera OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel) Earth and Planetary Science Letters 454 132 141
institution Open Polar
collection OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel)
op_collection_id ftoceanrep
language English
description Highlights • Records of seawater εNdεNd are highly unradiogenic across the OMT at Ceara Rise. • Strong influence of Amazon particulate Nd on seawater εNdεNd at Ceara Rise. • Point-sourced riverine Nd influences seawater far from continental shelf. • Regional sedimentary Nd flux can be confused with water mass mixing signals. Abstract Dissolved and particulate neodymium (Nd) are mainly supplied to the oceans via rivers, dust, and release from marine sediments along continental margins. This process, together with the short oceanic residence time of Nd, gives rise to pronounced spatial gradients in oceanic 143Nd/144Nd ratios (εNdεNd). However, we do not yet have a good understanding of the extent to which the influence of riverine point-source Nd supply can be distinguished from changes in mixing between different water masses in the marine geological record. This gap in knowledge is important to fill because there is growing awareness that major global climate transitions may be associated not only with changes in large-scale ocean water mass mixing, but also with important changes in continental hydroclimate and weathering. Here we present εNdεNd data for fossilised fish teeth, planktonic foraminifera, and the Fe–Mn oxyhydroxide and detrital fractions of sediments recovered from Ocean Drilling Project (ODP) Site 926 on Ceara Rise, situated approximately 800 km from the mouth of the River Amazon. Our records span the Mi-1 glaciation event during the Oligocene–Miocene transition (OMT; ∼23 Ma). We compare our εNdεNd records with data for ambient deep Atlantic northern and southern component waters to assess the influence of particulate input from the Amazon River on Nd in ancient deep waters at this site. εNdεNd values for all of our fish teeth, foraminifera, and Fe–Mn oxyhydroxide samples are extremely unradiogenic (εNd≈−15εNd≈−15); much lower than the εNdεNd for deep waters of modern or Oligocene–Miocene age from the North Atlantic (εNd≈−10εNd≈−10) and South Atlantic (εNd≈−8εNd≈−8). This finding suggests that ...
format Article in Journal/Newspaper
author Stewart, Joseph A.
Gutjahr, Marcus
James, Rachael H.
Anand, Pallavi
Wilson, Paul A.
spellingShingle Stewart, Joseph A.
Gutjahr, Marcus
James, Rachael H.
Anand, Pallavi
Wilson, Paul A.
Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition
author_facet Stewart, Joseph A.
Gutjahr, Marcus
James, Rachael H.
Anand, Pallavi
Wilson, Paul A.
author_sort Stewart, Joseph A.
title Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition
title_short Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition
title_full Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition
title_fullStr Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition
title_full_unstemmed Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition
title_sort influence of the amazon river on the nd isotope composition of deep water in the western equatorial atlantic during the oligocene–miocene transition
publisher Elsevier
publishDate 2016
url https://oceanrep.geomar.de/id/eprint/34075/
https://oceanrep.geomar.de/id/eprint/34075/1/Stewart.pdf
https://oceanrep.geomar.de/id/eprint/34075/2/Stewart_Supp.doc
https://doi.org/10.1016/j.epsl.2016.08.037
genre North Atlantic
Planktonic foraminifera
genre_facet North Atlantic
Planktonic foraminifera
op_relation https://oceanrep.geomar.de/id/eprint/34075/1/Stewart.pdf
https://oceanrep.geomar.de/id/eprint/34075/2/Stewart_Supp.doc
Stewart, J. A., Gutjahr, M. , James, R. H., Anand, P. and Wilson, P. A. (2016) Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition. Open Access Earth and Planetary Science Letters, 454 . pp. 132-141. DOI 10.1016/j.epsl.2016.08.037 <https://doi.org/10.1016/j.epsl.2016.08.037>.
doi:10.1016/j.epsl.2016.08.037
op_rights cc_by_4.0
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1016/j.epsl.2016.08.037
container_title Earth and Planetary Science Letters
container_volume 454
container_start_page 132
op_container_end_page 141
_version_ 1766136008556937216