Transport, potential vorticity, and current/temperature structure across Northwest Providence and Santaren Channels and the Florida Current off Cay Sal Bank
Currents and temperatures were measured using Pegasus current profilers across Northwest Providence and Santaren Channels and across the Florida Current off Cay Sal Bank during four cruises from November 1990 to September 1991. On average, Northwest Providence (1.2 Sv) and Santaren (1.8 Sv) contribu...
Published in: | Journal of Geophysical Research |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
AGU (American Geophysical Union)
1995
|
Subjects: | |
Online Access: | https://oceanrep.geomar.de/id/eprint/33006/ https://oceanrep.geomar.de/id/eprint/33006/1/Transport,%20portential%20vorticity%20Leaman%20et%20al.pdf https://doi.org/10.1029/94JC01436 |
Summary: | Currents and temperatures were measured using Pegasus current profilers across Northwest Providence and Santaren Channels and across the Florida Current off Cay Sal Bank during four cruises from November 1990 to September 1991. On average, Northwest Providence (1.2 Sv) and Santaren (1.8 Sv) contribute about 3 Sv to the total Florida Current transport farther north (e.g., 27°N). Partitioning of transport into temperature layers shows that about one-half of this transport is of “18°C” water (17°C–19.5°C); this can account for all of the “excess” 18°C water observed in previous experiments. This excess is thought to be injected into the 18°C layer in its region of formation in the northwestern North Atlantic Ocean. Due to its large thickness, potential vorticities in this layer in its area of formation are very low. In our data, lowest potential vorticities in this layer are found on the northern end of Northwest Providence Channel and are comparable to those observed on the eastern side of the Florida Current at 27°N. On average a low-potential-vorticity 18°C layer was not found in the Florida Current off Cay Sal Bank. |
---|