Potential distribution of methane hydrate beneath the European continental margins

Gridded datasets have been constructed for the physical parameters controlling the formation of gas hydrate. Simultaneous solutions to the gas hydrate phase and pressure-temperature equations were obtained for each node of these grids. The results show sub-bottom depths of potential methane hydrate...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Author: Miles, P. R.
Format: Article in Journal/Newspaper
Language:English
Published: AGU (American Geophysical Union) 2012
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/29977/
https://oceanrep.geomar.de/id/eprint/29977/1/Miles.pdf
https://doi.org/10.1029/95GL03013
Description
Summary:Gridded datasets have been constructed for the physical parameters controlling the formation of gas hydrate. Simultaneous solutions to the gas hydrate phase and pressure-temperature equations were obtained for each node of these grids. The results show sub-bottom depths of potential methane hydrate BSRs. These are presented as colour contoured grids for the thickness of the hydrate stability zone for the European margins. The chart proposes that if gas hydrates exist over these areas, then this is the potential depth to the BSR. This depth is generally greater along the continental margins and also increases with increasing age of the margin. Shallowing of the BSR can be seen over areas of thinned continental crust and plateaus. The geological factors controlling gas hydrate formation determine areas of likely occurrence so the apparent paucity of identified hydrate layer BSRs off the European margins, particularly in the Mediterranean, is most notable.