Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments

The internal consistency of measurements and computations of components of the CO2-system, namely total alkalinity (AT), total dissolved carbon dioxide (CT), CO2 fugacity (fCO2), and pH, has been confirmed repeatedly in open ocean studies when the CO2 system had been over determined. Differences bet...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Koeve, Wolfgang, Oschlies, Andreas
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications (EGU) 2012
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/14871/
https://oceanrep.geomar.de/id/eprint/14871/1/CO2SYS_DOM.m
https://oceanrep.geomar.de/id/eprint/14871/2/bg-9-3787-2012.pdf
https://doi.org/10.5194/bg-9-3787-2012
id ftoceanrep:oai:oceanrep.geomar.de:14871
record_format openpolar
spelling ftoceanrep:oai:oceanrep.geomar.de:14871 2023-05-15T17:51:58+02:00 Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments Koeve, Wolfgang Oschlies, Andreas 2012 other text https://oceanrep.geomar.de/id/eprint/14871/ https://oceanrep.geomar.de/id/eprint/14871/1/CO2SYS_DOM.m https://oceanrep.geomar.de/id/eprint/14871/2/bg-9-3787-2012.pdf https://doi.org/10.5194/bg-9-3787-2012 en eng Copernicus Publications (EGU) https://oceanrep.geomar.de/id/eprint/14871/1/CO2SYS_DOM.m https://oceanrep.geomar.de/id/eprint/14871/2/bg-9-3787-2012.pdf Koeve, W. and Oschlies, A. (2012) Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments. Open Access Biogeosciences (BG), 9 . pp. 3787-3798. DOI 10.5194/bg-9-3787-2012 <https://doi.org/10.5194/bg-9-3787-2012>. doi:10.5194/bg-9-3787-2012 cc_by info:eu-repo/semantics/openAccess Article PeerReviewed 2012 ftoceanrep https://doi.org/10.5194/bg-9-3787-2012 2023-04-07T15:04:32Z The internal consistency of measurements and computations of components of the CO2-system, namely total alkalinity (AT), total dissolved carbon dioxide (CT), CO2 fugacity (fCO2), and pH, has been confirmed repeatedly in open ocean studies when the CO2 system had been over determined. Differences between measured and computed properties, such as ΔfCO2 (=fCO2(measured) – fCO2(computed from AT and CT))/ fCO2(measured)× 100), there are usually below 5%. Recently, Hoppe et al. (2010) provided evidence of significantly larger ΔfCO2 in experimental setups. These observations are currently not well understood. Here we discuss a case from a series of phytoplankton culture experiments with ΔfCO2 of up to about 25%. ΔfCO2 varied systematically during the course of these experiments and showed a clear correlation with the accumulation of dissolved organic carbon (DOC). Culture and mesocosm experiments are often carried out under very high initial nutrient concentrations, yielding high biomass concentrations that in turn often lead to a substantial build-up of DOC. DOC can reach concentrations much higher than typically observed in the open ocean. To the extent that DOC includes organic acids and bases, it will contribute to the alkalinity of the seawater contained in the experimental device. Our analysis suggests that whenever substantial amounts of DOC are produced during the experiment, standard computer programs used to compute CO2 fugacity can underestimate true fCO2 significantly when the computation is based on AT and CT. Alternative explanations for large ΔfCO2, e.g. uncertainties of pKs, are explored as well, but are found to be of minor importance. Unless the effect of DOC-alkalinity is accounted for, this might lead to significant errors in the interpretation of the system under consideration to the experimentally applied CO2 perturbation, which could misguide the development of parameterisations used in simulations with global carbon cycle models in future CO2-scenarios. Article in Journal/Newspaper Ocean acidification OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel) Biogeosciences 9 10 3787 3798
institution Open Polar
collection OceanRep (GEOMAR Helmholtz Centre für Ocean Research Kiel)
op_collection_id ftoceanrep
language English
description The internal consistency of measurements and computations of components of the CO2-system, namely total alkalinity (AT), total dissolved carbon dioxide (CT), CO2 fugacity (fCO2), and pH, has been confirmed repeatedly in open ocean studies when the CO2 system had been over determined. Differences between measured and computed properties, such as ΔfCO2 (=fCO2(measured) – fCO2(computed from AT and CT))/ fCO2(measured)× 100), there are usually below 5%. Recently, Hoppe et al. (2010) provided evidence of significantly larger ΔfCO2 in experimental setups. These observations are currently not well understood. Here we discuss a case from a series of phytoplankton culture experiments with ΔfCO2 of up to about 25%. ΔfCO2 varied systematically during the course of these experiments and showed a clear correlation with the accumulation of dissolved organic carbon (DOC). Culture and mesocosm experiments are often carried out under very high initial nutrient concentrations, yielding high biomass concentrations that in turn often lead to a substantial build-up of DOC. DOC can reach concentrations much higher than typically observed in the open ocean. To the extent that DOC includes organic acids and bases, it will contribute to the alkalinity of the seawater contained in the experimental device. Our analysis suggests that whenever substantial amounts of DOC are produced during the experiment, standard computer programs used to compute CO2 fugacity can underestimate true fCO2 significantly when the computation is based on AT and CT. Alternative explanations for large ΔfCO2, e.g. uncertainties of pKs, are explored as well, but are found to be of minor importance. Unless the effect of DOC-alkalinity is accounted for, this might lead to significant errors in the interpretation of the system under consideration to the experimentally applied CO2 perturbation, which could misguide the development of parameterisations used in simulations with global carbon cycle models in future CO2-scenarios.
format Article in Journal/Newspaper
author Koeve, Wolfgang
Oschlies, Andreas
spellingShingle Koeve, Wolfgang
Oschlies, Andreas
Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments
author_facet Koeve, Wolfgang
Oschlies, Andreas
author_sort Koeve, Wolfgang
title Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments
title_short Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments
title_full Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments
title_fullStr Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments
title_full_unstemmed Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments
title_sort potential impact of dom accumulation of fco2 and carbonate ion computations in ocean acidification experiments
publisher Copernicus Publications (EGU)
publishDate 2012
url https://oceanrep.geomar.de/id/eprint/14871/
https://oceanrep.geomar.de/id/eprint/14871/1/CO2SYS_DOM.m
https://oceanrep.geomar.de/id/eprint/14871/2/bg-9-3787-2012.pdf
https://doi.org/10.5194/bg-9-3787-2012
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://oceanrep.geomar.de/id/eprint/14871/1/CO2SYS_DOM.m
https://oceanrep.geomar.de/id/eprint/14871/2/bg-9-3787-2012.pdf
Koeve, W. and Oschlies, A. (2012) Potential impact of DOM accumulation of fCO2 and carbonate ion computations in ocean acidification experiments. Open Access Biogeosciences (BG), 9 . pp. 3787-3798. DOI 10.5194/bg-9-3787-2012 <https://doi.org/10.5194/bg-9-3787-2012>.
doi:10.5194/bg-9-3787-2012
op_rights cc_by
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/bg-9-3787-2012
container_title Biogeosciences
container_volume 9
container_issue 10
container_start_page 3787
op_container_end_page 3798
_version_ 1766159263475957760