Numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant)

The results of a numerical simulation of the thermal regime of an underground facility for long-term storage of spent nuclear fuel in a built-in reinforced concrete structure are presented. Two computer models were constructed in a three-dimensional formulation in the COMSOL programme. The first mod...

Full description

Bibliographic Details
Main Author: Amosov, P. V.
Format: Other Non-Article Part of Journal/Newspaper
Language:Russian
Published: 2021
Subjects:
Online Access:http://hdl.handle.net/1834/41700
id ftoceandocs:oai:aquadocs.org:1834/41700
record_format openpolar
spelling ftoceandocs:oai:aquadocs.org:1834/41700 2023-05-15T15:04:51+02:00 Numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant) Численное моделирование теплового режима подземного объекта хранения отработавшего ядерного топлива (вариант встроенной конструкции) Amosov, P. V. Russia Arctic Россия Арктика 2021 pp.228-239 http://hdl.handle.net/1834/41700 ru rus http://vestnik.mstu.edu.ru/show-eng.shtml?art=2103 http://vestnik.mstu.edu.ru/show.shtml?art=2103 http://hdl.handle.net/1834/41700 Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Three-dimensional numerical simulation Mixed convection Spent fuel Storage facility Объемное численное моделирование Смешанная конвекция Критериальные значения температуры Отработавшее ядерное топливо Объект хранения Criterion of temperature values Heat flow Тепловой поток ASFA_2015::N::Nuclear wastes ASFA_2015::A::Arctic zone Journal Contribution 2021 ftoceandocs 2023-04-06T17:07:02Z The results of a numerical simulation of the thermal regime of an underground facility for long-term storage of spent nuclear fuel in a built-in reinforced concrete structure are presented. Two computer models were constructed in a three-dimensional formulation in the COMSOL programme. The first model is based on the incompressible fluid approximation, while the second model is based on the "incompressible ideal gas" approximation. The mathematical basis of models: the continuity equation, Navier – Stokes equations averaged by Reynolds, the standard (k – ?) turbulence model, and the general heat transfer equation. Consideration of mixed convection conditions is implemented in the "incompressible ideal gas" approximation, where the air density is a function of temperature only. The most thermally stressful arrangement of spent fuel placement is investigated: U-Zr – defective – U-Be. The air rate is varied in the range from 21 to 0.656 m3/s. Numerical experiments were performed for up to 5 years of fuel storage. The principal difference between the non-stationary structure of the velocity fields predicted in the "incompressible ideal gas" model and the "frozen" picture of the aerodynamic parameters in the incompressible fluid model is emphasized. It is shown that the requirements for exceeding the temperature limit values are met when the object operates under conservative ventilation conditions (rate 0.656 m3/s) with a minimum of costs for organizing ventilation. The dynamics of heat flows directed into the rock mass through the base and from the surface of the built-in structure of the U-Zr fuel compartment to the air environment are analyzed. The predominance of the heat flow from the surface of the structure and the different times when the curves of the heat flow dynamics reach their maximum values are noted. The heat flow to the array reaches its maximum significantly faster than to the air. Представлены результаты исследования методом численного моделирования теплового режима подземного объекта ... Other Non-Article Part of Journal/Newspaper Arctic Арктика IODE-UNESCO: OceanDocs - E-Repository of Ocean Publications Arctic
institution Open Polar
collection IODE-UNESCO: OceanDocs - E-Repository of Ocean Publications
op_collection_id ftoceandocs
language Russian
topic Three-dimensional numerical simulation
Mixed convection
Spent fuel
Storage facility
Объемное численное моделирование
Смешанная конвекция
Критериальные значения температуры
Отработавшее ядерное топливо
Объект хранения
Criterion of temperature values
Heat flow
Тепловой поток
ASFA_2015::N::Nuclear wastes
ASFA_2015::A::Arctic zone
spellingShingle Three-dimensional numerical simulation
Mixed convection
Spent fuel
Storage facility
Объемное численное моделирование
Смешанная конвекция
Критериальные значения температуры
Отработавшее ядерное топливо
Объект хранения
Criterion of temperature values
Heat flow
Тепловой поток
ASFA_2015::N::Nuclear wastes
ASFA_2015::A::Arctic zone
Amosov, P. V.
Numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant)
topic_facet Three-dimensional numerical simulation
Mixed convection
Spent fuel
Storage facility
Объемное численное моделирование
Смешанная конвекция
Критериальные значения температуры
Отработавшее ядерное топливо
Объект хранения
Criterion of temperature values
Heat flow
Тепловой поток
ASFA_2015::N::Nuclear wastes
ASFA_2015::A::Arctic zone
description The results of a numerical simulation of the thermal regime of an underground facility for long-term storage of spent nuclear fuel in a built-in reinforced concrete structure are presented. Two computer models were constructed in a three-dimensional formulation in the COMSOL programme. The first model is based on the incompressible fluid approximation, while the second model is based on the "incompressible ideal gas" approximation. The mathematical basis of models: the continuity equation, Navier – Stokes equations averaged by Reynolds, the standard (k – ?) turbulence model, and the general heat transfer equation. Consideration of mixed convection conditions is implemented in the "incompressible ideal gas" approximation, where the air density is a function of temperature only. The most thermally stressful arrangement of spent fuel placement is investigated: U-Zr – defective – U-Be. The air rate is varied in the range from 21 to 0.656 m3/s. Numerical experiments were performed for up to 5 years of fuel storage. The principal difference between the non-stationary structure of the velocity fields predicted in the "incompressible ideal gas" model and the "frozen" picture of the aerodynamic parameters in the incompressible fluid model is emphasized. It is shown that the requirements for exceeding the temperature limit values are met when the object operates under conservative ventilation conditions (rate 0.656 m3/s) with a minimum of costs for organizing ventilation. The dynamics of heat flows directed into the rock mass through the base and from the surface of the built-in structure of the U-Zr fuel compartment to the air environment are analyzed. The predominance of the heat flow from the surface of the structure and the different times when the curves of the heat flow dynamics reach their maximum values are noted. The heat flow to the array reaches its maximum significantly faster than to the air. Представлены результаты исследования методом численного моделирования теплового режима подземного объекта ...
format Other Non-Article Part of Journal/Newspaper
author Amosov, P. V.
author_facet Amosov, P. V.
author_sort Amosov, P. V.
title Numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant)
title_short Numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant)
title_full Numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant)
title_fullStr Numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant)
title_full_unstemmed Numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant)
title_sort numerical simulation of the thermal regime of an underground spent fuel storage facility (built-in structure variant)
publishDate 2021
url http://hdl.handle.net/1834/41700
op_coverage Russia
Arctic
Россия
Арктика
geographic Arctic
geographic_facet Arctic
genre Arctic
Арктика
genre_facet Arctic
Арктика
op_relation http://vestnik.mstu.edu.ru/show-eng.shtml?art=2103
http://vestnik.mstu.edu.ru/show.shtml?art=2103
http://hdl.handle.net/1834/41700
op_rights Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
_version_ 1766336590412513280