Absorption and oscillation tomography of the deep Earth with KM3NeT and future atmospheric neutrino detectors

Structure and composition of the deep Earth are constrained by seismic methods and geochemical models based on primitive meteorites. These leave some questions unsolved, such as the exact composition of the outer core or the nature of seismic anomalies at the core/mantle boundary (LLSVP). Neutrinos...

Full description

Bibliographic Details
Main Author: Maderer, Lukas
Other Authors: APC - Neutrinos, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris Cité, Edoaurd Kaminsiki
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://theses.hal.science/tel-03859695
https://theses.hal.science/tel-03859695/document
https://theses.hal.science/tel-03859695/file/PhD_Thesis_final.pdf
id ftobservparis:oai:HAL:tel-03859695v1
record_format openpolar
institution Open Polar
collection Archive de l'Observatoire de Paris (HAL)
op_collection_id ftobservparis
language English
topic neutrino
oscillation
absorption
Earth
matter
LLSVP
Terre
matière
[PHYS]Physics [physics]
spellingShingle neutrino
oscillation
absorption
Earth
matter
LLSVP
Terre
matière
[PHYS]Physics [physics]
Maderer, Lukas
Absorption and oscillation tomography of the deep Earth with KM3NeT and future atmospheric neutrino detectors
topic_facet neutrino
oscillation
absorption
Earth
matter
LLSVP
Terre
matière
[PHYS]Physics [physics]
description Structure and composition of the deep Earth are constrained by seismic methods and geochemical models based on primitive meteorites. These leave some questions unsolved, such as the exact composition of the outer core or the nature of seismic anomalies at the core/mantle boundary (LLSVP). Neutrinos are neutral elementary particles that only interact with matter by the weak force and are thus able to cover large distances even through dense media such as the Earth, opening a new window to study our planet's interior. By studying absorption of atmospheric neutrinos>30TeV, absorption tomography allows to draw conclusions about the average matter density along the neutrino path. Furthermore, at energies of a few GeV, oscillation tomography exploits the fact that neutrino avour oscillations are affected by the electron density along the neutrino path, an observable connected to both the matter density and chemical composition of the traversed media. The first studies in this thesis are performed for the two water-Cherenkov detectors ARCA and ORCA, currently being built in the Mediterranean Sea as part of the KM3NeT infrastructure. The detector response is modelled using Monte Carlo simulations developed within the KM3NeT Collaboration. Absorption tomography with ARCA can resolve the average radial density profile of the Earth with a clear separation of core and mantle. The precision from studying atmospheric neutrinos alone appears insufficient to study finer structures. Improvements could come by exploiting the high energy astrophysical neutrino flux, as detected by IceCube. From oscillation tomography with ORCA, density variations compared to PREM can be constrained with a respective precision of +24%/-32% for the inner core and ~5% for the lower mantle, with 10 yr of ORCA data. In the same timescale, ORCA could constrain the density variations of large seismic anomalies in the deep mantle to +24%/-21 %. The sensitivity to the proton-to-nucleon ratio (Z/A) in the outer core was found to be ~5 %. The second part ...
author2 APC - Neutrinos
AstroParticule et Cosmologie (APC (UMR_7164))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585))
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Université Paris Cité
Edoaurd Kaminsiki
format Doctoral or Postdoctoral Thesis
author Maderer, Lukas
author_facet Maderer, Lukas
author_sort Maderer, Lukas
title Absorption and oscillation tomography of the deep Earth with KM3NeT and future atmospheric neutrino detectors
title_short Absorption and oscillation tomography of the deep Earth with KM3NeT and future atmospheric neutrino detectors
title_full Absorption and oscillation tomography of the deep Earth with KM3NeT and future atmospheric neutrino detectors
title_fullStr Absorption and oscillation tomography of the deep Earth with KM3NeT and future atmospheric neutrino detectors
title_full_unstemmed Absorption and oscillation tomography of the deep Earth with KM3NeT and future atmospheric neutrino detectors
title_sort absorption and oscillation tomography of the deep earth with km3net and future atmospheric neutrino detectors
publisher HAL CCSD
publishDate 2022
url https://theses.hal.science/tel-03859695
https://theses.hal.science/tel-03859695/document
https://theses.hal.science/tel-03859695/file/PhD_Thesis_final.pdf
genre Orca
genre_facet Orca
op_source https://theses.hal.science/tel-03859695
Physics [physics]. Université Paris Cité, 2022. English. ⟨NNT : ⟩
op_relation tel-03859695
https://theses.hal.science/tel-03859695
https://theses.hal.science/tel-03859695/document
https://theses.hal.science/tel-03859695/file/PhD_Thesis_final.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1782338699211571200
spelling ftobservparis:oai:HAL:tel-03859695v1 2023-11-12T04:24:09+01:00 Absorption and oscillation tomography of the deep Earth with KM3NeT and future atmospheric neutrino detectors Tomographie par absorption et par oscillation de la terre profonde avec KM3NeT et les futurs détecteurs de neutrinos atmosphériques Maderer, Lukas APC - Neutrinos AstroParticule et Cosmologie (APC (UMR_7164)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)) Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Université Paris Cité Edoaurd Kaminsiki 2022-10-21 https://theses.hal.science/tel-03859695 https://theses.hal.science/tel-03859695/document https://theses.hal.science/tel-03859695/file/PhD_Thesis_final.pdf en eng HAL CCSD tel-03859695 https://theses.hal.science/tel-03859695 https://theses.hal.science/tel-03859695/document https://theses.hal.science/tel-03859695/file/PhD_Thesis_final.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-03859695 Physics [physics]. Université Paris Cité, 2022. English. ⟨NNT : ⟩ neutrino oscillation absorption Earth matter LLSVP Terre matière [PHYS]Physics [physics] info:eu-repo/semantics/doctoralThesis Theses 2022 ftobservparis 2023-10-15T20:33:57Z Structure and composition of the deep Earth are constrained by seismic methods and geochemical models based on primitive meteorites. These leave some questions unsolved, such as the exact composition of the outer core or the nature of seismic anomalies at the core/mantle boundary (LLSVP). Neutrinos are neutral elementary particles that only interact with matter by the weak force and are thus able to cover large distances even through dense media such as the Earth, opening a new window to study our planet's interior. By studying absorption of atmospheric neutrinos>30TeV, absorption tomography allows to draw conclusions about the average matter density along the neutrino path. Furthermore, at energies of a few GeV, oscillation tomography exploits the fact that neutrino avour oscillations are affected by the electron density along the neutrino path, an observable connected to both the matter density and chemical composition of the traversed media. The first studies in this thesis are performed for the two water-Cherenkov detectors ARCA and ORCA, currently being built in the Mediterranean Sea as part of the KM3NeT infrastructure. The detector response is modelled using Monte Carlo simulations developed within the KM3NeT Collaboration. Absorption tomography with ARCA can resolve the average radial density profile of the Earth with a clear separation of core and mantle. The precision from studying atmospheric neutrinos alone appears insufficient to study finer structures. Improvements could come by exploiting the high energy astrophysical neutrino flux, as detected by IceCube. From oscillation tomography with ORCA, density variations compared to PREM can be constrained with a respective precision of +24%/-32% for the inner core and ~5% for the lower mantle, with 10 yr of ORCA data. In the same timescale, ORCA could constrain the density variations of large seismic anomalies in the deep mantle to +24%/-21 %. The sensitivity to the proton-to-nucleon ratio (Z/A) in the outer core was found to be ~5 %. The second part ... Doctoral or Postdoctoral Thesis Orca Archive de l'Observatoire de Paris (HAL)