Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations

International audience Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid particles that enhance the stratospheric aerosol optical depth (SAOD). However, uncertainties remain in the atmospheric and climatic impacts due to limitati...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Roberts, Tjarda, J, Lurton, Thibaut, Jegou, Fabrice, Berthet, Gwenaël, Renard, Jean-Baptiste, Clarisse, Lieven, Schmidt, Anja, Brogniez, Colette
Other Authors: Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales Paris (CNES), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université libre de Bruxelles (ULB), Institute for Climate and Atmospheric Science Leeds (ICAS), School of Earth and Environment Leeds (SEE), University of Leeds-University of Leeds, Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Format: Conference Object
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://insu.hal.science/insu-03565545
https://doi.org/10.5194/acp-18-3223-2018
id ftobservparis:oai:HAL:insu-03565545v1
record_format openpolar
institution Open Polar
collection Archive de l'Observatoire de Paris (HAL)
op_collection_id ftobservparis
language English
topic Volcanology
Atmospheric effects
Volcano/climate interactions
Extreme events
Volcanic effects
[SDU]Sciences of the Universe [physics]
spellingShingle Volcanology
Atmospheric effects
Volcano/climate interactions
Extreme events
Volcanic effects
[SDU]Sciences of the Universe [physics]
Roberts, Tjarda, J
Lurton, Thibaut
Jegou, Fabrice
Berthet, Gwenaël
Renard, Jean-Baptiste
Clarisse, Lieven
Schmidt, Anja
Brogniez, Colette
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations
topic_facet Volcanology
Atmospheric effects
Volcano/climate interactions
Extreme events
Volcanic effects
[SDU]Sciences of the Universe [physics]
description International audience Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid particles that enhance the stratospheric aerosol optical depth (SAOD). However, uncertainties remain in the atmospheric and climatic impacts due to limitations in model representations of particle microphysics and size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, some eruptions such as Sarychev Peak 2009 co-injected hydrogen chloride (HCl) alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. Lurton et al. ACP (2018) present a study of the stratospheric SO2-particle-HCl processing and impacts from the Sarychev Peak eruption, using the CESM1-WACCM-CARMA sectional aerosol microphysics model (with no a priori assumption on particle size). The eruption injected 0.9 Tg of SO2 into the UTLS, enhancing the aerosol load in the Northern Hemisphere. The post-eruption volcanic SO2 is well reproduced by the model compared to IASI satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx) compared to the simulation with volcanic SO2 only. We highlight the need to account for volcanic halogen chemistry when simulating the chemistry-climate impacts of eruptions. The model-simulated evolution of effective radius reflects new particle formation followed by particle growth to reach up to 0.2 μm on zonal average. Comparison of the model-simulated particle number and size distributions to balloon-borne in situ stratospheric observations over Kiruna, Sweden (Aug-Sept 2009), and Laramie, USA, (June, Nov, 2009) show good agreement and quantitatively confirm the post-eruption particle enhancement. We show that the model-simulated SAOD is consistent with that derived from OSIRIS when both the saturation bias of OSIRIS and the fact that ...
author2 Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E)
Observatoire des Sciences de l'Univers en région Centre (OSUC)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales Paris (CNES)
Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES)
Université libre de Bruxelles (ULB)
Institute for Climate and Atmospheric Science Leeds (ICAS)
School of Earth and Environment Leeds (SEE)
University of Leeds-University of Leeds
Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA)
Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
format Conference Object
author Roberts, Tjarda, J
Lurton, Thibaut
Jegou, Fabrice
Berthet, Gwenaël
Renard, Jean-Baptiste
Clarisse, Lieven
Schmidt, Anja
Brogniez, Colette
author_facet Roberts, Tjarda, J
Lurton, Thibaut
Jegou, Fabrice
Berthet, Gwenaël
Renard, Jean-Baptiste
Clarisse, Lieven
Schmidt, Anja
Brogniez, Colette
author_sort Roberts, Tjarda, J
title Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations
title_short Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations
title_full Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations
title_fullStr Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations
title_full_unstemmed Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations
title_sort model simulations of the chemical and aerosol microphysical evolution of the sarychev peak 2009 (so2, hcl, particles) eruption cloud compared to in situ and satellite observations
publisher HAL CCSD
publishDate 2018
url https://insu.hal.science/insu-03565545
https://doi.org/10.5194/acp-18-3223-2018
op_coverage Washington, United States
genre Kiruna
genre_facet Kiruna
op_source American Geophysical Union Fall Meeting 2018
https://insu.hal.science/insu-03565545
American Geophysical Union Fall Meeting 2018, Dec 2018, Washington, United States. ⟨10.5194/acp-18-3223-2018⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-18-3223-2018
insu-03565545
https://insu.hal.science/insu-03565545
BIBCODE: 2018AGUFMGC13E1065R
doi:10.5194/acp-18-3223-2018
op_doi https://doi.org/10.5194/acp-18-3223-2018
container_title Atmospheric Chemistry and Physics
container_volume 18
container_issue 5
container_start_page 3223
op_container_end_page 3247
_version_ 1810454868668710912
spelling ftobservparis:oai:HAL:insu-03565545v1 2024-09-15T18:16:52+00:00 Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 (SO2, HCl, Particles) eruption cloud compared to in situ and satellite observations Roberts, Tjarda, J Lurton, Thibaut Jegou, Fabrice Berthet, Gwenaël Renard, Jean-Baptiste Clarisse, Lieven Schmidt, Anja Brogniez, Colette Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E) Observatoire des Sciences de l'Univers en région Centre (OSUC) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales Paris (CNES) Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES) Université libre de Bruxelles (ULB) Institute for Climate and Atmospheric Science Leeds (ICAS) School of Earth and Environment Leeds (SEE) University of Leeds-University of Leeds Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA) Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS) Washington, United States 2018-12-10 https://insu.hal.science/insu-03565545 https://doi.org/10.5194/acp-18-3223-2018 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-18-3223-2018 insu-03565545 https://insu.hal.science/insu-03565545 BIBCODE: 2018AGUFMGC13E1065R doi:10.5194/acp-18-3223-2018 American Geophysical Union Fall Meeting 2018 https://insu.hal.science/insu-03565545 American Geophysical Union Fall Meeting 2018, Dec 2018, Washington, United States. ⟨10.5194/acp-18-3223-2018⟩ Volcanology Atmospheric effects Volcano/climate interactions Extreme events Volcanic effects [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/conferenceObject Conference papers 2018 ftobservparis https://doi.org/10.5194/acp-18-3223-2018 2024-06-25T00:01:25Z International audience Volcanic eruptions impact climate through the injection of sulfur dioxide (SO2), which is oxidized to form sulfuric acid particles that enhance the stratospheric aerosol optical depth (SAOD). However, uncertainties remain in the atmospheric and climatic impacts due to limitations in model representations of particle microphysics and size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, some eruptions such as Sarychev Peak 2009 co-injected hydrogen chloride (HCl) alongside SO2, whose potential stratospheric chemistry impacts have not been investigated to date. Lurton et al. ACP (2018) present a study of the stratospheric SO2-particle-HCl processing and impacts from the Sarychev Peak eruption, using the CESM1-WACCM-CARMA sectional aerosol microphysics model (with no a priori assumption on particle size). The eruption injected 0.9 Tg of SO2 into the UTLS, enhancing the aerosol load in the Northern Hemisphere. The post-eruption volcanic SO2 is well reproduced by the model compared to IASI satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO2 lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NOx) compared to the simulation with volcanic SO2 only. We highlight the need to account for volcanic halogen chemistry when simulating the chemistry-climate impacts of eruptions. The model-simulated evolution of effective radius reflects new particle formation followed by particle growth to reach up to 0.2 μm on zonal average. Comparison of the model-simulated particle number and size distributions to balloon-borne in situ stratospheric observations over Kiruna, Sweden (Aug-Sept 2009), and Laramie, USA, (June, Nov, 2009) show good agreement and quantitatively confirm the post-eruption particle enhancement. We show that the model-simulated SAOD is consistent with that derived from OSIRIS when both the saturation bias of OSIRIS and the fact that ... Conference Object Kiruna Archive de l'Observatoire de Paris (HAL) Atmospheric Chemistry and Physics 18 5 3223 3247