Role of lee waves in the formation of solid polar stratospheric clouds: Case studies from February 1997

International audience Recent theories of solid polar stratospheric clouds (PSCs) formation have shown that particles could remain liquid down to 3 K or 4 K below the ice frost point. Such temperatures are rarely reached in the Arctic stratosphere at synoptic scale, but nevertheless, solid PSCs are...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Rivière, E., D., Huret, Nathalie, Taupin, F. G., Renard, Jean-Baptiste, Pirre, Michel, Eckermann, S., Larsen, N., Deshler, T., Lefèvre, Franck, Payan, Sébastien, Camy-Peyret, Claude
Other Authors: Laboratoire de physique et chimie de l'environnement (LPCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales Paris (CNES), Naval Research Laboratory (NRL), Danish Meteorological Institute (DMI), Department of Atmospheric Science Laramie, University of Wyoming (UW), Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Moleculaire pour l'Atmosphere et l'Astrophysique (LPMAA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2000
Subjects:
Online Access:https://insu.hal.science/insu-02879176
https://insu.hal.science/insu-02879176/document
https://insu.hal.science/insu-02879176/file/1999JD900908.pdf
https://doi.org/10.1029/1999JD900908
Description
Summary:International audience Recent theories of solid polar stratospheric clouds (PSCs) formation have shown that particles could remain liquid down to 3 K or 4 K below the ice frost point. Such temperatures are rarely reached in the Arctic stratosphere at synoptic scale, but nevertheless, solid PSCs are frequently observed. Mesoscale processes such as mountain-induced gravity waves could be responsible for their formation. In this paper, a microphysical-chemical Lagrangian model (MiPLaSMO) and a mountain wave model (NRL/MWFM) are used to interpret balloon-borne measurements made by an optical particle counter (OPC) and by the Absorption par Minoritaires Ozone et NOr (AMON) instrument above Kiruna on February 25 and 26, 1997, respectively. The model results show good agreement with the particle size distributions obtained by the OPC in a layer of large particles, and allow us to interpret this layer as an evaporating mesoscale type Ia PSC (nitric acid trihydrate) mixed with liquid particles. The detection of a layer of solid particles by AMON is also qualitatively reproduced by the model and is interpreted to be frozen sulfate acid aerosols (SAT). In this situation, the impact of mountain waves on chlorine activation is studied. It appears that mesoscale perturbations amplify significantly the amount of computed C10, as compared to synoptic runs. Moreover, MiPLaSMO chemical results concerning HNO3 and HC1 agree with measurements made by the Limb Profile Monitor of the Atmosphere (LPMA) instrument on February 26 at a very close location to AMON, and explain part of the differences between LPMA measurement and Reactive Processes Ruling the Ozone Budget in the Stratosphere (REPROBUS) model outputs.