Caseyev teorem
U ovom diplomskom radu bavimo se Caseyevim teoremom. U prvom poglavlju iskazujemo i dokazujemo Ptolomejev teorem kako bismo pobliže razumjeli Caseyev teorem, te definiramo osnovne pojmove koje koristimo kroz rad. U drugom poglavlju pažnju posvećujemo inverziji koja se koristi u dokazivanju Caseyevog...
Main Author: | |
---|---|
Other Authors: | |
Format: | Master Thesis |
Language: | Croatian |
Published: |
Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet. Matematički odsjek.
2019
|
Subjects: | |
Online Access: | https://zir.nsk.hr/islandora/object/pmf:6184 https://urn.nsk.hr/urn:nbn:hr:217:920742 https://repozitorij.unizg.hr/islandora/object/pmf:6184 https://repozitorij.unizg.hr/islandora/object/pmf:6184/datastream/PDF |
id |
ftnulzagrebzir:oai:zir.nsk.hr:pmf_6184 |
---|---|
record_format |
openpolar |
spelling |
ftnulzagrebzir:oai:zir.nsk.hr:pmf_6184 2023-08-27T04:11:47+02:00 Caseyev teorem Naglaš, Adam Bombardelli, Mea 2019-02-28 application/pdf https://zir.nsk.hr/islandora/object/pmf:6184 https://urn.nsk.hr/urn:nbn:hr:217:920742 https://repozitorij.unizg.hr/islandora/object/pmf:6184 https://repozitorij.unizg.hr/islandora/object/pmf:6184/datastream/PDF hrv hrv Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet. Matematički odsjek. University of Zagreb. Faculty of Science. Department of Mathematics. https://zir.nsk.hr/islandora/object/pmf:6184 https://urn.nsk.hr/urn:nbn:hr:217:920742 https://repozitorij.unizg.hr/islandora/object/pmf:6184 https://repozitorij.unizg.hr/islandora/object/pmf:6184/datastream/PDF http://rightsstatements.org/vocab/InC/1.0/ info:eu-repo/semantics/openAccess Caseyev teorem Ptolomejev teorem geometrijski zadaci inverzija Casey’s theorem Ptolemy’s theorem geometric problems inversion PRIRODNE ZNANOSTI. Matematika NATURAL SCIENCES. Mathematics info:eu-repo/semantics/masterThesis text 2019 ftnulzagrebzir 2023-08-03T17:51:20Z U ovom diplomskom radu bavimo se Caseyevim teoremom. U prvom poglavlju iskazujemo i dokazujemo Ptolomejev teorem kako bismo pobliže razumjeli Caseyev teorem, te definiramo osnovne pojmove koje koristimo kroz rad. U drugom poglavlju pažnju posvećujemo inverziji koja se koristi u dokazivanju Caseyevog teorema. U trećem poglavlju iskazujemo i dokazujemo Caseyev teorem na nekoliko načina i dokazujemo specijalne slučajeve Caseyevog teorema. Sami kraj rada posvećen je primjeni Caseyevog teorema u dokazivanju drugih teorema i u rješavanju geometrijskih zadataka. In this graduate thesis we are dealing with Casey’s theorem. In the first chapter, we formulate and prove Ptolemy’s theorem to better understand Casey’s theorem, and define the basic terms we use through graduate thesis. In the second chapter, we dedicate to the inversion used to prove Casey’s theorem. In the third chapter, we phrase and prove Casey’s theorem in several ways and prove the special cases of Casey’s theorem. The end of the graduate thesis is dedicated to the application of Casey’s theorem in proving other theorems and in solving geometric problems. Master Thesis sami Croatian Digital Theses Repository (National and University Library in Zagreb) |
institution |
Open Polar |
collection |
Croatian Digital Theses Repository (National and University Library in Zagreb) |
op_collection_id |
ftnulzagrebzir |
language |
Croatian |
topic |
Caseyev teorem Ptolomejev teorem geometrijski zadaci inverzija Casey’s theorem Ptolemy’s theorem geometric problems inversion PRIRODNE ZNANOSTI. Matematika NATURAL SCIENCES. Mathematics |
spellingShingle |
Caseyev teorem Ptolomejev teorem geometrijski zadaci inverzija Casey’s theorem Ptolemy’s theorem geometric problems inversion PRIRODNE ZNANOSTI. Matematika NATURAL SCIENCES. Mathematics Naglaš, Adam Caseyev teorem |
topic_facet |
Caseyev teorem Ptolomejev teorem geometrijski zadaci inverzija Casey’s theorem Ptolemy’s theorem geometric problems inversion PRIRODNE ZNANOSTI. Matematika NATURAL SCIENCES. Mathematics |
description |
U ovom diplomskom radu bavimo se Caseyevim teoremom. U prvom poglavlju iskazujemo i dokazujemo Ptolomejev teorem kako bismo pobliže razumjeli Caseyev teorem, te definiramo osnovne pojmove koje koristimo kroz rad. U drugom poglavlju pažnju posvećujemo inverziji koja se koristi u dokazivanju Caseyevog teorema. U trećem poglavlju iskazujemo i dokazujemo Caseyev teorem na nekoliko načina i dokazujemo specijalne slučajeve Caseyevog teorema. Sami kraj rada posvećen je primjeni Caseyevog teorema u dokazivanju drugih teorema i u rješavanju geometrijskih zadataka. In this graduate thesis we are dealing with Casey’s theorem. In the first chapter, we formulate and prove Ptolemy’s theorem to better understand Casey’s theorem, and define the basic terms we use through graduate thesis. In the second chapter, we dedicate to the inversion used to prove Casey’s theorem. In the third chapter, we phrase and prove Casey’s theorem in several ways and prove the special cases of Casey’s theorem. The end of the graduate thesis is dedicated to the application of Casey’s theorem in proving other theorems and in solving geometric problems. |
author2 |
Bombardelli, Mea |
format |
Master Thesis |
author |
Naglaš, Adam |
author_facet |
Naglaš, Adam |
author_sort |
Naglaš, Adam |
title |
Caseyev teorem |
title_short |
Caseyev teorem |
title_full |
Caseyev teorem |
title_fullStr |
Caseyev teorem |
title_full_unstemmed |
Caseyev teorem |
title_sort |
caseyev teorem |
publisher |
Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet. Matematički odsjek. |
publishDate |
2019 |
url |
https://zir.nsk.hr/islandora/object/pmf:6184 https://urn.nsk.hr/urn:nbn:hr:217:920742 https://repozitorij.unizg.hr/islandora/object/pmf:6184 https://repozitorij.unizg.hr/islandora/object/pmf:6184/datastream/PDF |
genre |
sami |
genre_facet |
sami |
op_relation |
https://zir.nsk.hr/islandora/object/pmf:6184 https://urn.nsk.hr/urn:nbn:hr:217:920742 https://repozitorij.unizg.hr/islandora/object/pmf:6184 https://repozitorij.unizg.hr/islandora/object/pmf:6184/datastream/PDF |
op_rights |
http://rightsstatements.org/vocab/InC/1.0/ info:eu-repo/semantics/openAccess |
_version_ |
1775354962115559424 |