Larval transport dynamics in Nephrops norvegicus

Transport of meroplankton larvae in the ocean is a crucial process as it enables connectivity between populations and determines larval supply for species with narrow habitat requirements and sedentary adult stages. The Norway lobster (Nephrops norvegicus), Europe’s most important commercial crustac...

Full description

Bibliographic Details
Main Author: McGeady, Ryan
Other Authors: Power, Anne Marie, Lordan, Colm, Marine Institute
Format: Thesis
Language:unknown
Published: NUI Galway 2020
Subjects:
Online Access:http://hdl.handle.net/10379/16530
https://doi.org/10.13025/16552
id ftnuigalway:oai:https://researchrepository.universityofgalway.ie:10379/16530
record_format openpolar
spelling ftnuigalway:oai:https://researchrepository.universityofgalway.ie:10379/16530 2024-09-30T14:40:03+00:00 Larval transport dynamics in Nephrops norvegicus McGeady, Ryan Power, Anne Marie Lordan, Colm Marine Institute 2020-11-13 application/pdf http://hdl.handle.net/10379/16530 https://doi.org/10.13025/16552 unknown NUI Galway http://hdl.handle.net/10379/16530 https://doi.org/10.13025/16552 Attribution-NonCommercial-NoDerivs 3.0 Ireland https://creativecommons.org/licenses/by-nc-nd/3.0/ie/ Nephrops larvae transport simulation connectivity global warming Zoology Natural Sciences Thesis 2020 ftnuigalway https://doi.org/10.13025/16552 2024-09-17T14:44:29Z Transport of meroplankton larvae in the ocean is a crucial process as it enables connectivity between populations and determines larval supply for species with narrow habitat requirements and sedentary adult stages. The Norway lobster (Nephrops norvegicus), Europe’s most important commercial crustacean, has a patchy distribution across the Northeast Atlantic Ocean and Mediterranean Sea. Adults inhabit areas of muddy substrate where they excavate and spend most of their time within burrows. The pelagic larval phase enables connectivity between populations separated by uninhabitable substrate. Larvae rely on settlement on suitable mud habitat for survival. Therefore, larval settlement, driven by local hydrography, may act as a constraint on recruitment. Biophysical models offer a method of simulating larval transport, which is extremely difficult to observe in-situ due to the inherent difficulties in tracking miniscule larvae in vast areas of the ocean. In the current study, a biophysical larval transport model was used to estimate larval retention, dispersal distance and connectivity for N. norvegicus grounds around Ireland. Models parameters were supported by empirical data in order to accurately represent the biological and behavioural processes of larvae. In Chapter 2, the vertical distribution and occurrence of a Diel Vertical Migration (DVM) in N. norvegicus larvae was examined. Larval vertical distribution was influenced by the vertical temperature differential in the water column, zooplankton biomass and the potential energy anomaly. A twilight DVM was identified and involved two ascents and two descents per day. In Chapter 3, historical zooplankton datasets were used to identify an earlier larval phenology shift in N. norvegicus by 19.1 days from 1982 - 1995 to 2000 - 2010. Ocean warming was identified as the most likely cause as increasing temperatures led to a contraction of the embryo incubation period and earlier hatching of larvae. The phenology shift appeared to have a limited effect on larval ... Thesis Northeast Atlantic National University of Ireland (NUI), Galway: ARAN Burrows ENVELOPE(163.650,163.650,-74.300,-74.300) Norway
institution Open Polar
collection National University of Ireland (NUI), Galway: ARAN
op_collection_id ftnuigalway
language unknown
topic Nephrops
larvae
transport
simulation
connectivity
global warming
Zoology
Natural Sciences
spellingShingle Nephrops
larvae
transport
simulation
connectivity
global warming
Zoology
Natural Sciences
McGeady, Ryan
Larval transport dynamics in Nephrops norvegicus
topic_facet Nephrops
larvae
transport
simulation
connectivity
global warming
Zoology
Natural Sciences
description Transport of meroplankton larvae in the ocean is a crucial process as it enables connectivity between populations and determines larval supply for species with narrow habitat requirements and sedentary adult stages. The Norway lobster (Nephrops norvegicus), Europe’s most important commercial crustacean, has a patchy distribution across the Northeast Atlantic Ocean and Mediterranean Sea. Adults inhabit areas of muddy substrate where they excavate and spend most of their time within burrows. The pelagic larval phase enables connectivity between populations separated by uninhabitable substrate. Larvae rely on settlement on suitable mud habitat for survival. Therefore, larval settlement, driven by local hydrography, may act as a constraint on recruitment. Biophysical models offer a method of simulating larval transport, which is extremely difficult to observe in-situ due to the inherent difficulties in tracking miniscule larvae in vast areas of the ocean. In the current study, a biophysical larval transport model was used to estimate larval retention, dispersal distance and connectivity for N. norvegicus grounds around Ireland. Models parameters were supported by empirical data in order to accurately represent the biological and behavioural processes of larvae. In Chapter 2, the vertical distribution and occurrence of a Diel Vertical Migration (DVM) in N. norvegicus larvae was examined. Larval vertical distribution was influenced by the vertical temperature differential in the water column, zooplankton biomass and the potential energy anomaly. A twilight DVM was identified and involved two ascents and two descents per day. In Chapter 3, historical zooplankton datasets were used to identify an earlier larval phenology shift in N. norvegicus by 19.1 days from 1982 - 1995 to 2000 - 2010. Ocean warming was identified as the most likely cause as increasing temperatures led to a contraction of the embryo incubation period and earlier hatching of larvae. The phenology shift appeared to have a limited effect on larval ...
author2 Power, Anne Marie
Lordan, Colm
Marine Institute
format Thesis
author McGeady, Ryan
author_facet McGeady, Ryan
author_sort McGeady, Ryan
title Larval transport dynamics in Nephrops norvegicus
title_short Larval transport dynamics in Nephrops norvegicus
title_full Larval transport dynamics in Nephrops norvegicus
title_fullStr Larval transport dynamics in Nephrops norvegicus
title_full_unstemmed Larval transport dynamics in Nephrops norvegicus
title_sort larval transport dynamics in nephrops norvegicus
publisher NUI Galway
publishDate 2020
url http://hdl.handle.net/10379/16530
https://doi.org/10.13025/16552
long_lat ENVELOPE(163.650,163.650,-74.300,-74.300)
geographic Burrows
Norway
geographic_facet Burrows
Norway
genre Northeast Atlantic
genre_facet Northeast Atlantic
op_relation http://hdl.handle.net/10379/16530
https://doi.org/10.13025/16552
op_rights Attribution-NonCommercial-NoDerivs 3.0 Ireland
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
op_doi https://doi.org/10.13025/16552
_version_ 1811642604802015232