Effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (RAS) with Atlantic salmon parr (Salmo salar)

A key challenge in recirculating aquaculture systems (RAS) is the accumulation of particulate organic matter, especially the fine and colloidal fraction due to low removal efficiency of today's technology. The supply of organic matter is typically the limiting resource determining the carrying...

Full description

Bibliographic Details
Published in:Aquaculture
Main Authors: Fossmark, Ragnhild Olsen, Vadstein, Olav, Rosten, Trond Waldemar, Bakke, Ingrid, Koseto, Deni, Bugten, Anette Voll, Helberg, Gaute Alexander Nedberg, Nesje, Jenny, Jørgensen, Niels O.G., Raspati, Gema Sakti, Azrague, Kamal, Østerhus, Stein Wold, Attramadal, Kari
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2020
Subjects:
Online Access:https://hdl.handle.net/11250/2654559
https://doi.org/10.1016/j.aquaculture.2020.735268
id ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/2654559
record_format openpolar
spelling ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/2654559 2023-05-15T15:32:27+02:00 Effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (RAS) with Atlantic salmon parr (Salmo salar) Fossmark, Ragnhild Olsen Vadstein, Olav Rosten, Trond Waldemar Bakke, Ingrid Koseto, Deni Bugten, Anette Voll Helberg, Gaute Alexander Nedberg Nesje, Jenny Jørgensen, Niels O.G. Raspati, Gema Sakti Azrague, Kamal Østerhus, Stein Wold Attramadal, Kari 2020 application/pdf https://hdl.handle.net/11250/2654559 https://doi.org/10.1016/j.aquaculture.2020.735268 eng eng Elsevier SINTEF Ocean: 702296 Norges forskningsråd: 260872 urn:issn:0044-8486 https://hdl.handle.net/11250/2654559 https://doi.org/10.1016/j.aquaculture.2020.735268 cristin:1805500 Navngivelse 4.0 Internasjonal http://creativecommons.org/licenses/by/4.0/deed.no CC-BY 524 Aquaculture Peer reviewed Journal article 2020 ftntnutrondheimi https://doi.org/10.1016/j.aquaculture.2020.735268 2020-05-20T22:32:38Z A key challenge in recirculating aquaculture systems (RAS) is the accumulation of particulate organic matter, especially the fine and colloidal fraction due to low removal efficiency of today's technology. The supply of organic matter is typically the limiting resource determining the carrying capacity (CC) of heterotrophic bacteria in the system. An appropriate and stable CC is proposed as a strategy for an optimal microbial environment in RAS with less blooms of opportunistic bacteria and more stable community dynamics. In this study, we investigated the effects of including a membrane for ultrafiltration in the RAS water treatment loop (treating 10–15% of the total water flow) to reduce the amount of fine and colloidal organic matter. Atlantic salmon parr (Salmo salar) were reared in two pilot-scale RAS (mRAS: membrane, cRAS: conventional). To evaluate the bacterial dynamics with and without membrane filtration at different organic loadings, the water exchange rates of the systems were manipulated equally to create periods with high and low loading of organic matter. The results showed that in the mRAS water, the level of organic matter was more stable throughout the experiment for the changing organic matter loadings. As a consequence, water in mRAS had higher microbial diversity, lower and shorter bacterial blooms and generally lower bacterial densities than in cRAS. All variables indicate a better microbial environment in the water of the system with membrane filtration. Also, the physicochemical water quality was better in mRAS in terms of lower turbidity and particulate organic matter (POC), and slightly lower concentrations of total ammonia nitrogen (TAN). The composition of the microbial communities was significantly different between the two systems, and temporal variations in the community dynamics were observed in both systems during the periods with different organic loadings. At high organic loading, the genus Mycobacterium had high relative abundance in the cRAS water (up to 0.25) compared to mRAS (0.01–0.03). The fish in mRAS were significantly bigger (14%) than fish in cRAS at the end of the experiment, however it is hard to conclude whether the better growth in mRAS was due to higher temperatures (caused by membrane operation) or better water quality, as it was probably a combination of both. We can conclude that membrane filtration gave more stable and better physicochemical and microbial water quality, which will reduce the probability for microbially related accidents in RAS. publishedVersion © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Article in Journal/Newspaper Atlantic salmon Salmo salar NTNU Open Archive (Norwegian University of Science and Technology) Aquaculture 524 735268
institution Open Polar
collection NTNU Open Archive (Norwegian University of Science and Technology)
op_collection_id ftntnutrondheimi
language English
description A key challenge in recirculating aquaculture systems (RAS) is the accumulation of particulate organic matter, especially the fine and colloidal fraction due to low removal efficiency of today's technology. The supply of organic matter is typically the limiting resource determining the carrying capacity (CC) of heterotrophic bacteria in the system. An appropriate and stable CC is proposed as a strategy for an optimal microbial environment in RAS with less blooms of opportunistic bacteria and more stable community dynamics. In this study, we investigated the effects of including a membrane for ultrafiltration in the RAS water treatment loop (treating 10–15% of the total water flow) to reduce the amount of fine and colloidal organic matter. Atlantic salmon parr (Salmo salar) were reared in two pilot-scale RAS (mRAS: membrane, cRAS: conventional). To evaluate the bacterial dynamics with and without membrane filtration at different organic loadings, the water exchange rates of the systems were manipulated equally to create periods with high and low loading of organic matter. The results showed that in the mRAS water, the level of organic matter was more stable throughout the experiment for the changing organic matter loadings. As a consequence, water in mRAS had higher microbial diversity, lower and shorter bacterial blooms and generally lower bacterial densities than in cRAS. All variables indicate a better microbial environment in the water of the system with membrane filtration. Also, the physicochemical water quality was better in mRAS in terms of lower turbidity and particulate organic matter (POC), and slightly lower concentrations of total ammonia nitrogen (TAN). The composition of the microbial communities was significantly different between the two systems, and temporal variations in the community dynamics were observed in both systems during the periods with different organic loadings. At high organic loading, the genus Mycobacterium had high relative abundance in the cRAS water (up to 0.25) compared to mRAS (0.01–0.03). The fish in mRAS were significantly bigger (14%) than fish in cRAS at the end of the experiment, however it is hard to conclude whether the better growth in mRAS was due to higher temperatures (caused by membrane operation) or better water quality, as it was probably a combination of both. We can conclude that membrane filtration gave more stable and better physicochemical and microbial water quality, which will reduce the probability for microbially related accidents in RAS. publishedVersion © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
format Article in Journal/Newspaper
author Fossmark, Ragnhild Olsen
Vadstein, Olav
Rosten, Trond Waldemar
Bakke, Ingrid
Koseto, Deni
Bugten, Anette Voll
Helberg, Gaute Alexander Nedberg
Nesje, Jenny
Jørgensen, Niels O.G.
Raspati, Gema Sakti
Azrague, Kamal
Østerhus, Stein Wold
Attramadal, Kari
spellingShingle Fossmark, Ragnhild Olsen
Vadstein, Olav
Rosten, Trond Waldemar
Bakke, Ingrid
Koseto, Deni
Bugten, Anette Voll
Helberg, Gaute Alexander Nedberg
Nesje, Jenny
Jørgensen, Niels O.G.
Raspati, Gema Sakti
Azrague, Kamal
Østerhus, Stein Wold
Attramadal, Kari
Effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (RAS) with Atlantic salmon parr (Salmo salar)
author_facet Fossmark, Ragnhild Olsen
Vadstein, Olav
Rosten, Trond Waldemar
Bakke, Ingrid
Koseto, Deni
Bugten, Anette Voll
Helberg, Gaute Alexander Nedberg
Nesje, Jenny
Jørgensen, Niels O.G.
Raspati, Gema Sakti
Azrague, Kamal
Østerhus, Stein Wold
Attramadal, Kari
author_sort Fossmark, Ragnhild Olsen
title Effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (RAS) with Atlantic salmon parr (Salmo salar)
title_short Effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (RAS) with Atlantic salmon parr (Salmo salar)
title_full Effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (RAS) with Atlantic salmon parr (Salmo salar)
title_fullStr Effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (RAS) with Atlantic salmon parr (Salmo salar)
title_full_unstemmed Effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (RAS) with Atlantic salmon parr (Salmo salar)
title_sort effects of reduced organic matter loading through membrane filtration on the microbial community dynamics in recirculating aquaculture systems (ras) with atlantic salmon parr (salmo salar)
publisher Elsevier
publishDate 2020
url https://hdl.handle.net/11250/2654559
https://doi.org/10.1016/j.aquaculture.2020.735268
genre Atlantic salmon
Salmo salar
genre_facet Atlantic salmon
Salmo salar
op_source 524
Aquaculture
op_relation SINTEF Ocean: 702296
Norges forskningsråd: 260872
urn:issn:0044-8486
https://hdl.handle.net/11250/2654559
https://doi.org/10.1016/j.aquaculture.2020.735268
cristin:1805500
op_rights Navngivelse 4.0 Internasjonal
http://creativecommons.org/licenses/by/4.0/deed.no
op_rightsnorm CC-BY
op_doi https://doi.org/10.1016/j.aquaculture.2020.735268
container_title Aquaculture
container_volume 524
container_start_page 735268
_version_ 1766362943276974080